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1 Introduction

This documents helps to interpret the output produced by the openGUTS software; both
the Matlab version and the standalone software (the outputs are basically the same).
The openGUTS website also contains user manuals (for getting started and running the
software) and technical background documentation. However, it is important for users of
the software to understand the basic concepts behind GUTS. Therefore, reading Chapters
1 and 2 of the GUTS e-book [4] is highly recommended. Section 2 in this document
provides a short summary, only considering the models implemented in openGUTS and
their parameters.

In the remainder of this document, I first go through a well-behaved example, explaining
the graphical and text output of the software (Section 3). Section 4 treats some typical
nasty cases that may occur. The information in that section is intended to identify those
cases and to suggest a prudent course of action.

Disclaimer. This document is meant to aid users to understand what the model output
means, and what is signified by specific types of outputs. It deals with several aspects
that are not treated, at least not in detail, by the EFSA scientific opinion [2]. However,
this document is written from a scientific perspective, and does not have any explicit or
implied regulatory status.

Version information. Updating from the version of 21 May 2019, I added another
special case, which I have christened the Maltese-cross anomaly. Updating from the version
of 10 December 2019, I added a chapter on the underlying model and its parameters.



2 The GUTS model and its parameters

A thorough discussion of the GUTS model is outside of the scope of this document; the
reader is referred to the (freely-downloadable) e-book [4]. However, some knowloedge of the
model structure and its parameters is needed to interpret the output of openGUTS. There-
fore, I will present in this chapter a concise description of the model versions implemented
in the software.

The openGUTS software implements two variants, special cases derived from the GUTS
framework. These are reduced models (RED), which means that toxicokinetics (uptake
and elimination of the chemical) and damage dynamics are lumped into a single first-
order compartment of ‘scaled damage’. This is needed to allow modelling survival data
in the absence of information on body residues (which is the normal situation for risk
assessment, and for ecotox applications in general). The implemented variants of the RED
models are the pure stochastic death (SD) and individual tolerance model (IT). The GUTS
framework unifies these two death mechanisms, but the ‘proper’ model can generally not
be fitted to the type of survival data sets available for risk assessment. Note that the
BYOM platform under Matlab (https://www.debtox.info/byom.html) contains code to
use other variants, at the expense of limited user friendliness.

2.1 Scaled damage dynamics

The structure of the GUTS-RED models is schematically shown in Figure 1, keeping the
death mechanism vague for the moment. There is only one compartment in between the
exposure scenario (external concentrations over time) and the death mechanism. This
compartment is referred to as ‘scaled damage’. This compartment is the one-compartment
approximation of an essentially two-(or more-)compartment system.

toxicokinetics and damage dynamics death mechanism

exposure

scenario

Kq

scaled
damage - a» a» *

Figure 1: Schematic flow chart for GUTS-RED models; death mechanism not specified.

The equation for damage is a simple ordinary differential equation (ODE), linking the
change in scaled damage (D,,) to the concentration in the exposure medium (C,,, which
might be time varying):

dD,,

— = ka(Cu = Dy)  with Dy(0) =0 (1)
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In openGUTS, this equation is solved analytically, also for time-varying exposure. The
single parameter k; is referred to as the ‘dominant rate constant’, and can generally be
estimated from the patterns of survival over time.

Note that damage is scaled, which implies that it has the units of the external concen-
tration. Under constant exposure, scaled damage will reach a steady-state value equal to
the external concentration: D,,(c0) = C, (illustrated in Fig. 2). The single parameter kq
governs the curvature, and thereby the time needed to reach steady state under constant
exposure.

scaled damage (D,
.
=~
o

exposure time (t)

Figure 2: Pattern of scaled damage over time, under constant exposure.

2.2 GUTS-RED-SD

The structure of the GUTS-RED-SD model is schematically shown in Figure 3. The left
part of the scheme was already discussed in the previous section, and here the right part
will be filled in. Stochastic death implies that the individuals in a toxicity test are all
identical, but have a probability to die, depending on the damage level in their bodies.

GUTS-RED-SD
toxicokinetics and damage dynamics death mechanism
exposure
scenario
Ky by hb m,

hazard

survival of
cohort over time

scaled

rate
damage

Figure 3: Schematic flow chart for GUTS-RED-SD.

Dealing with a continuously changing probability over time is the realm of hazard
modelling. The hazard rate due to chemical stress (h.) is the ‘instantaneous probability to
die’, which is calculated using a linear-with-threshold relationship in D,,:



he = by max(0, Dy, — my,) (2)

As long as scaled damage is below the threshold m,,, the probability to die due to the
chemical is zero. When scaled damage exceeds the threshold, the hazard rate increases
linearly with a proportionality constant b, (the killing rate or effect strength). This is
illustrated in Figure 4.

hazard rate (h;)

damage level (D)
Figure 4: Linear-with-threshold relationship between hazard and scaled damage.

Turning the hazard rate into a survival probability (S.) requires an integration over

time:
S, = exp (— /0 t hc(r)dT) (3)

In openGUTS, this integration is performed analytically for constant exposure, and nu-
merically (trapezium-rule integration) for time-varying exposure.

2.3 GUTS-RED-IT

The structure of the GUTS-RED-IT model is schematically shown in Figure 5. The left
part of the scheme was already discussed above, and here the right part will be filled
in. Individual tolerance implies that individuals differ in the value of their threshold for
mortality, but deaths is instantaneous when scaled damage exceeds that threshold.

Calculating IT thus requires comparison of scaled damage D,, to the threshold distri-
bution for the animals. In openGUTS, we assume a log-logistic distribution with median
threshold m,, and a spread factor F,. The spread factor is the factor by which you need to
multiply and divide the median to cover 95% of the threshold distribution. E.g., m,, = 10
with Fy = 2 specifies a distribution with 95% of the threshold values between 5 and 20. The
F} is inversely proportional to the § of the log-logistic distribution but easier to interpret.

When comparing scaled damage to a threshold distribution, we need to take care when
exposure is not constant: when damage decreases, the dead animals should not become
alive again. Therefore, we first derive the maximum damage level up to that time point
(Dym). From that maximum, we can directly calculate survival probability S. due to
chemical exposure from the log-logistic distribution:

1 In 39
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Figure 5: Schematic flow chart for GUTS-RED-IT.

Even though the same symbol m,, is used here for SD and IT, the interpretation is subtly
different. Under IT, the threshold is distributed in the test population and m,, is the
median of that distribution. Under SD, all individuals have the same threshold value m,,
(which could still be seen as the median of a Dirac delta distribution: a distribution with
all the probability density in a single point).

The threshold distribution for IT is illustrated in Figure 6. The threshold is a damage
threshold. However, since we use scaled damage, it has the units of an external concentra-
tion (just like damage).

probability density

log threshold value

Figure 6: Threshold distribution, plotted on log scale.

2.4 Dealing with background mortality

The chemical stress may not be the only cause of death in the test system. Even in
the control treatment, there may be mortality. Since the focus of openGUTS lies on the
analysis of relatively short-term laboratory toxicity data, background mortality mostly
relates to random events such as handling, and not to old-age effects. Therefore, we can
treat background mortality as a constant hazard rate (h;). Thus, when S, is established,
it needs to be multiplied with the background survival probability:

S =S, x exp(—hyt) (5)



Note that exp(—hyt) is the integration of a constant hazard rate over time as in Eq. 3.



3 A simple data set

Next, I will run through a simple data set to illustrate how everything goes in a rather
best-case situation. This is a dataset for propiconazole in the amphipod Gammarus pulez.
It was published by Nyman et al [5], and was also used as case study for GUTS in several
places [4, 2]. The data set is distributed as example with the software.

Here, I will analyse this data set (keeping background hazard fixed to the value deter-
mined from the control treatment), validate with pulsed exposure data, and make predic-
tions for a series of FOCUS profiles. Output shown is from the Matlab version, which is
very similar to the output of the standalone version.! Only the stochastic death (SD) anal-
ysis is shown here, although one would generally perform both an SD and an IT (individual
tolerance) analysis for the purpose of environmental risk assessment.

3.1 Input data

The Matlab version requires entering data as a formatted text file, whereas the standalone
version additionally has an input grid to directly enter data or copy-paste from Excel. Both
software versions can use the same text files, which are tab-delimited. The tabs don’t line
out nicely here, but the text file looks like this:

Part of the GUTS ring test. Real data set for
propiconazole in Gammarus pulex from Nyman et al
(2012) . Ecotoxicology 21, 1828-1840.

Survival time [d] Control T1 T2 T3 T4 T5 T6 T7

0 20 20 20 20 21 20 20 20

119 20 19 19 21 17 11 11

219 20 19 19206 4 1
319 20 19 18 16 2 0 0
4 19 19 17 16 16 1 0 O

Concentration unit: uM
Concentration time [d] Control T1 T2 T3 T4 T5 T6 T7
0 0 8.05 11.906 13.8 17.872 24.186 28.93 35.924

The first lines are a description of the data set (as many lines as you like), which is
handy to keep track of what is what. Below that, a matrix with survivors over time (in
days) in a series of treatments. Below that, the concentration unit (for displaying and
archiving only). And below that, a matrix that provides the exposure scenario for this
test; in this case (constant exposure) it is a single row of values (one for each treatment).

The first plot to make is an inspection plot (in the standalone version, press the button
[Display datal, in the Matlab version it is given automatically). This plot is only meant as
a check on your data file: did you enter the correct data set in the correct manner? This is
especially handy for checking the definition of time-varying exposure scenarios. The error
bars on the survival data are the confidence intervals (CI) on the binomial proportion (the
Wilson score interval). This provides an indication of how well the data are capable of

!Note that the output in this document is from an older version, and may (in non-essential ways) differ
slightly from the latest version.



specifying survival probabilities (note that these interval will become tighter as the number
of individuals underlying each point increases).

File: propiconazole_constant_cal_inspect_1
set: 1, Control set: 1, T1
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Figure 7: Inspection plot for the data set.

3.2 Calibration

Optimisation. Here, we are running the calibration with the background hazard rate h,,
fixed. That is to say: it is fitted on the control treatment, and kept fixed when fitting the
other model parameters.? We start by looking at the screen output:

Following data sets are loaded for calibration:
set: 1, file: propiconazole_constant.txt

Settings for parameter search ranges:

kd bounds: 0.001641 - 143.8 1/d fit: 1 (log)
mw bounds: 0.002202 - 35.56 uM fit: 1 (norm)
hb bounds: 0.01307 - 0.01307 1/d fit: 0 (norm)
bw bounds: 0.0007332 - 9310 1/(uM d) fit: 1 (log)
Fs bounds: 1 - 1 [-] fit: 0 (norm)

Special case: stochastic death (SD)
Background hazard rate fixed to a value fitted on controls

Whether to fit hj, on the controls only or on all data is a choice that needs to be made by the user
(or by a regulatory authority). There are pros and cons to both strategies. Section 2.3.4 of the e-book
provides a discussion.
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Search ranges have been automatically generated, based on the properties of the data set
(time vector for survival data, and choice of exposure concentrations). The fit marks show
that k4, m,, and b,, are fitted. The other parameters are fixed: hy to the value fitted on the
control treatment, and Fy to 1 (which implies no differences between individuals, which
is the consequence of having the pure-SD model here). Several parameters are fitted on
log-scale, which is more efficient (they span a large search range and small values are highly
relevant). In general, there will be no need to change these default settings. However, in
some extreme cases, it may help to modify them.?
Next, the algorithm goes through several rounds of optimisation:

Starting round 1 with initial grid of 2016 parameter sets
Status: best fit so far is (minloglik) 131.8616
Starting round 2, refining a selection of 200 parameter sets, with 60 tries each
Status: 19 sets within total CI and 8 within inner. Best fit: 125.8153
Starting round 3, refining a selection of 200 parameter sets, with 40 tries each
Status: 335 sets within total CI and 106 within inner. Best fit: 125.8153
Starting round 4, refining a selection of 867 parameter sets, with 57 tries each
Status: 8497 sets within total CI and 3016 within inner. Best fit: 125.8153
Finished sampling, running a simplex optimisation ...
Status: 8498 sets within total CI and 3016 within inner. Best fit: 125.8152
Starting round 5, creating the profile likelihoods for each parameter
Finished profiling, running a simplex optimisation on the best fit set found ...
Status: 8499 sets within total CI and 3017 within inner. Best fit: 125.8152

Round one is an initial regular grid, trying parameter sets all over the search range to
see where the promising sets are. The subsequent rounds mutate the most promising sets
to obtain a good coverage of the parameter space around the best estimate. In the last
round, profile likelihoods are generated (explained later). In this case, the analysis finishes
after profiling. However, in more complex cases, additional sampling rounds (or even a
new round of profiling) may be triggered.

The final plot of parameter space is shown in Figure 8. This plot is of major importance
to judge the fit and whether the parameter’s values can be identified from the data set.
Therefore, this requires some explanation. Below the diagonal, there are three plots with
some kind of ‘clouds’. In fact, this is a single three-dimensional parameter cloud, projected
in three 2-D plots. The yellow dot is the best estimate: the parameter set that leads to
the highest value of the likelihood function. The inner cloud of green points are all within
a certain goodness-of-fit distance from the best value, and the outer cloud of blue points
are all within the joint 95% CI of the model parameters.

On the diagonal, we also see a projection of the parameter cloud (these are the same
points as in the 2-D plots), but in a slightly different manner: the sample is plotted for a
single parameter (x-axis), but with it’s associated goodness-of-fit on the y-axis. The best
value is again shown with a yellow dot, and plotted at a y-axis value of zero (in the scaling
of these plots, higher values than zero mark a poorer fit). The green points in the profile
plots are the same as the green plots in the 2-D plots, and the same goes for the blue

3This requires a larger degree of expertise from the user as it is certainly possible to modify these
settings in such a way that the calibration algorithm will perform poorly or even fail.
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File: propiconazole_constant_parspace_SD (02-May-2019)
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Figure 8: Final plot of parameter space. It shows the sample in all 2-D projections, and
the profile likelihoods on the diagonal. The horizontal solid line in the profile plots is the
critical value for the 95% CI. The dotted line above and below indicate the band from
which the parameter sets will be used to propagate the uncertainty to model predictions.

points. The green points are all within a certain goodness-of-fit cut-off (a log-likelihood
ratio of 1.92), which marks the single-parameter CI. The range between the minimum and
maximum value of the green points in a profile plot for a parameter thus constitutes the
CI of that model parameter.

The points were all derived by sampling. The red line in the profile plot is, however,
a refinement, made by a clever algorithm to find the lowest possible log-likelihood ratio
for each value of the parameter. If all goes well, the red line should be just below the
sample points everywhere. There should be no sample points below the red line, and no
gaps between the sample and the red line. Where the red line crosses the solid horizontal
line is thus a refined estimate for our single-parameter CI. In well-behaved cases, there are
two such crossings, and we have a nicely defined continuous CI. However, we’ll see some
cases later where this is less nice.

In principle, we can use the parameter sets that are on the horizontal line to propagate
the uncertainty to model predictions (e.g., for our LC50 and LP50 estimates). However,
the sample contains a discrete number of points from a continuous parameter space, So no
point will be ezactly on this line. Therefore, it is good to take all values within a certain
band around this line. The dotted horizontal lines show the band of values that is used
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for uncertainty propagation. This is a rather arbitrary bandwidth, but it is designed to
yield representative Cls, also in cases where the parameter space is oddly shaped or even
discontinuous.*

In this case, the parameter space plot looks very nice: well defined inner and outer
clouds in the 2-D plots, not so much correlation between parameters, well-defined profiles
that are almost parabola (which they will be for very large data sets), and a sample
that nicely covers the relevant part of parameter space (no empty spots). We therefore
can conclude that the optimisation worked well, and that all parameters are properly
identifiable from the dataset. However, this does not mean that the fit was any good, or
that this result is useful for risk assessment. Also, the other way around, an oddly-shaped
parameter space does not imply a bad or useless fit (see Section 4). For that judgement,
we would also need to look at the fit to the survival data in the next section.

The final result of the optimisation is output to screen:

Results of the parameter estimation

GUTS prototype: version 0.5 of 29 April 2019
Base name : propiconazole_constant
Analysis date: 02-May-2019 (12:37)
Following data sets are loaded for calibration:
set: 1, file: propiconazole_constant.txt
Sample: 8499 sets in joint CI and 3017 in inner CI.
Propagation set: 1308 sets will be used for error propagation.
Minus log-likelihood has reached 125.8152 (AIC=257.63).
Best estimates and 95% CIs on single parameters

kd best: 2.191 ( 1.630 - 3.353 ) 1/d fit: 1 (log)
mw best: 16.93 ( 15.74 - 17.57 ) uM fit: 1 (norm)
hb best: 0.01307 ( NaN - NaN ) 1/d fit: 0 (norm)
bw best: 0.1306 ( 0.08626 - 0.1912 ) 1/(uM d4) fit: 1 (log)
Fs best: 1.000 ( NaN - NaN ) [-] fit: 0 (norm)

Special case: stochastic death (SD)
Background hazard rate fixed to a value fitted on controls

This provides some information on the fit, such as the size of the sample, and the final
minus log-likelihood value. The parameter matrix provides the best estimate for each
parameter and its 95% likelihood-based CI, and recaps the settings (fitting yes/no and
fitting on log or normal scale). Note that NaN stands for ‘not a number’. Below that, it
gives some extra information:

Extra information from the fit:

Depuration/repair time (DRT95) : 1.4 (0.89 - 1.8) days
Parameter ranges used for the optimisation:
kd range: 0.001641 - 143.8

4The principles of using a frequentist sample from parameter space for Cls and error propagation is
explained in more detail in the GUTS e-book [4], Appendix D.
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mw range: 0.002202 - 35.56
hb range: 0.01307 - 0.01307
bw range: 0.0007332 - 9310
Fs range: 1 - 1

Time required for optimisation: 21.3 secs

It gives a depuration/repair time: when we would expose an animal to a pulse of the
chemical, this is the estimated time needed for damage to return to 5% of the value that
it was at the end of the pulse. The DRT95 can be used as a pragmatic approximation
for the time needed between two pulses to make them independent (as proposed in the
EFSA scientific opinion).> This value can thus be used to design validation tests with
differently-spaced pulses; in this case, two pulses with 2 days or more in between would be
treated as being independent, based on this fit. Below that, the search ranges are given
once again.

Note. The optimisation algorithm applies random mutation of candidate parameter sets.
Therefore, each run with the software will produce slightly different results. I would ex-
pect the same minus log-likelihood in all cases (with 4 digits behind the decimal point),
maximum differences in the parameter estimates within 0.1%, and maximum difference in
single parameter ClIs within 1%. For predictions, the difference may be slightly higher, as
prediction relies directly on the sample, but generally those will be within 2%.

Plotting. The results of the calibration are plotted with the standard plotting format
for the openGUTS software: three rows of plots with exposure, survival, damage versus
time, for each treatment separately.

Judging the fit will be mainly based on the lower row of plots: the estimated and
observed survival probability over time. Judging these plots requires some expertise. The
main trick is to see whether the patterns in the data are well represented by the model
patterns. The CIs are of help in this respect, but it is good to keep in mind what they
represent. The CIs on the model curves (the green areas) represent the uncertainty in the
model curve. In other words, if we would repeat the experiment, and make best-fit model
curves again, we would expect to find these new curves within the green bands.® However,
these bands tell us nothing about where to find new observations on survival probability.
Where we can expect new observations depends on how many individuals we will test. If we
test 1000 individuals in each treatment, the observations should be within the green bands,
but not if we test 4 individuals per treatment. Therefore, we should not demand that all
observations fall within the green bands.” The observations can only give an estimate for
the survival probability at each point, and these estimates are also uncertain. The Wilson

5Technically, two pulses will never be independent. Damage will decrease exponentially after a pulse
but never truly reach zero.

6More accurately: 95% of the Cls created in this way will capture the ‘true’ curve.

It would be possible to create additional bands that should capture where the data points can be
expected (prediction intervals). However, this requires some further theoretical work before such an option
can be implemented into a future update.
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File: propiconazole_constant_cal_SD_1
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Figure 9: Model fit. Top row: exposure scenario, middle row: modelled damage with 95%
CI, lower row: modelled survival probability (with 95% CI) and survival observations (with
Wilson score interval).

score (error bars on the data points) gives an indication of this uncertainty. Together,
these two Cls give an impression of whether the deviations between model and data are
acceptable or not.

However, the CIs should not be our sole focus for judging the fit. We should consider
the CIs together with the first statement [ made: “see whether the patterns in the data are
well represented by the model patterns.” Looking at the fit in Figure 9, both the model and
the data span a nice range from no effects to complete mortality. Furthermore, the pattern
in the high treatments is well captured by the model and gives no reason for concern. In
the lower treatments (T1-T3) there is, however, a peculiar pattern: the model fit judges
all mortality in these treatments to be background mortality, but the observations show
a slight dose-dependent increase in mortality. The model cannot fit these low-dose effects
together with the high-dose effects and focusses on a good fit of the latter. This will in
general be the case: observation intervals with high mortality carry more weight in the
likelihood function than observation intervals with low mortality. It is possible that these
low-dose effects are simply caused by randomness, and that they will not show up when
repeating the test. However, it is good to keep the possibility of low-dose effects in mind.

On screen, the model output will include some goodness-of-fit measures, as proposed
in the EFSA scientific opinion [2]:

Goodness of fit measures for calibration
Special case: stochastic death (SD)
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Model efficiency (NSE, r-square)
Normalised root-means-square error (NRMSE): 7.948 7
Survival probability prediction error (SPPE) for each treatment

Data set treatment value
1 Control +0.0938 %
1 T1 +0.0938 %
1 T2 -9.91 %
1 T3 -14.9 %
1 T4 +3.79 %
1 T5 -0.559 %
1 T6 -0.690 %
1 T7 -0.0297 %

: 0.981

1

Warning: these measures need to be interpreted more qualitatively
as they, strictly speaking, do not apply to quantal data

The last message warns us that these measures are limited; it is difficult to come up with
a useful goodness-of-fit measure for survival data over time. From a scientific viewpoint,
it is therefore not recommended to apply a strict pass-fail criterion on such measures.®
Model fits are also plotted as predicted-versus-observed plots (Fig. 10). This provides
an additional means to judge the goodness-of-fit. The dotted lines show a rather arbitrary

20% deviation.?

File: propiconazole_constant_obspred_cal_SD_1
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Figure 10: Predicted-versus-observed plots for survival probability (left) and number of
deaths in each time interval (right). Error bars on predicted survival probability are the
CI resulting from the parameter uncertainty (green bands in Fig. 9). Dotted lines mark a
deviation of 20% from the 1:1 line, which can help to guide the eye.

As a final word of warning: the goodness-of-fit measures given above, and most of the
plots, are comparing predicted and observed survival probabilities (or numbers). However,

8To calculate the NSE and NRMSE, the data and model value at ¢t = 0 are excluded. Especially for
the NSE, this may not be such a good idea. Therefore, this needs to be reconsidered.

9The EFSA opinion, Fig. 23, shows lines for 25 and 50% deviation, but this is based on the distance
at a 45-degree angle from the solid line (as percentage of the initial number of animals). Since this is a
rather awkward (and arbitrary) definition, we decided on a simple alternative that provides roughly the
same distance.
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the likelihood function that is optimised is not based on such comparison. The likelihood
function compares observed and predicted deaths in each interval between observations.
The right plot of Figure 10 is thus closest to how the model is optimised. In practice, we
are usually more interested in whether the model is able to accurately predict the survival
probability over time. For a good fit, it will generally be the case that the best fit on
the deaths also provides a good representation of the survival probability. However, this
complication needs to be kept in mind when judging data sets that fit less well.

3.3 Estimation of LCx

The parameters (and the parameter cloud) can be used to make predictions with CIs. One
useful prediction is for the LCx,t: the concentration that, when applied as a constant
exposure, produces % mortality (relative to the control) after ¢ days of exposure. The
model provides output to screen for LC50, LC20 and LC10 at various standard time points,
and a plot for LC50 and LC10 (Fig. 11).

Results table for LCx,t (uM), with 95% CI
Special case: stochastic death (SD)

time (d) LC50 LC20 LC10
1 33.3 (29.9- 37.7) 25.5 ( 23.1- 28.1) 23.1 ( 20.8- 25.3)
2 22.6 (21.5- 24.0) 19.5 ( 18.5- 20.3) 18.6 ( 17.5- 19.2)
3 20.1 (19.2- 21.0) 18.2 ( 17.2- 18.8) 17.7 ( 16.6- 18.2)
4 19.0 ( 18.1- 19.8) 17.7 ( 16.7- 18.3) 17.4 ( 16.2- 18.0)
7 17.9 ( 16.9- 18.6) 17.3 ( 16.1- 17.9) 17.1 ( 15.9- 17.7)
14 17.4 ( 16.2- 18.0) 17.1 ( 156.9- 17.7) 17.0 ( 15.8- 17.7)
21 17.2 ( 16.0- 17.9) 17.0 ( 15.8- 17.7) 17.0 ( 15.7- 17.6)
28 17.1 ( 156.9- 17.8) 17.0 ( 15.8- 17.6) 17.0 ( 15.7- 17.6)
42 17.1 ( 156.8- 17.7) 17.0 ( 16.7- 17.6) 17.0 ( 15.7- 17.6)
50 17.0 ( 156.8- 17.7) 17.0 ( 16.7- 17.6) 16.9 ( 15.7- 17.6)
100 17.0 ( 15.7- 17.6) 16.9 ( 156.7- 17.6) 16.9 ( 15.7- 17.6)

All LCxz values will decrease over time until they reach a stable or incipient value. For
SD, the LCz values for all x will go towards the same value: the threshold m,, (compare
the last value at ¢ = 100 in the LCz table to the best estimate for m,, in Section 3.2).
This is a property of the SD model. For the IT model, the LCx values will ultimately
run parallel for different values of x. The rate at which the LCx values decrease over time
depends on the model parameters: on kg, and for SD on b, as well. The uncertainties in
the parameter estimates (including their correlations) is propagated to a CI for the LCz, ¢
values.

The interesting thing is thus that openGUTS can provide robust estimates for LCz,t
values, using all observations at all time points, even for time points beyond the test
observations, even when exposure has not been constant in a test, and even when the
dataset would not be suitable for classic dose-response analysis (see [3]).
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3.4 Validation

Figure 11: Plot of LC50 and LC10 over time, with 95% ClIs.

The data set.

like this:

File: propiconazole_constant_LCxt_SD

—O—LC50
—0—LC10

5 10
time (days)

15

Next, we can validate the calibrated model using data for pulsed exposure,
from the same publication. The data set comprises a control (which will be used to fix the
background hazard rate), two pulse treatments, and a longer-term constant exposure. The
pulses have 2 or 6 days in between. In view of the estimated DRT95, both scenarios would
be treated as being ‘toxicologically independent’ under the SD hypothesis: negligible carry-
over toxicity is expected as the damage caused by the first pulse will be almost completely
repaired by the time the second pulse hits the animals.!” The text file of the data set looks

Part of the GUTS ring test. Real data for propiconazole in

Gammarus pulex from Nyman et al
1840. Note that the pulses are specified as a linear series of time
points and concentration, with a short (but non-zero) transition time

from one exposure situation to the next.
Survival time [d] Control close pulses wide pulses constant

60
59
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57
57
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10 54
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Concentration unit: uM
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0Note that for IT, the DRT95 will be (very) different. This implies that the DRT95 criterion should

not be applied too strictly in the design of validation tests.
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Concentration time [d] Control close pulses wide pulses constant
0 30.56 28.98 4.93
.96 0 27.93 27.66 4.69

000 4.69

96 0 0.26 0.27 4.58

96 0 0.21 0.26 4.58

0 27.69 0.26 4.58
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.96 0 0.18 26.28 4.59
0 0.18 0 4.59
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Again, it is a good idea to make an inspection plot (Fig. 12) to check that the exposure
scenario was represented appropriately.

File: propiconazole_constant_val_inspect_1
set: 1, Control set: 1, close pulses set: 1, wide pulses set: 1, constant
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Figure 12: Inspection plot for the validation data set.

The comparison. Next, we can calculate the model output for damage and survival
for these new exposure scenarios (which were not used for calibration). The background
hazard rate is fixed, to the fitted value for the control of the validation stage. There might
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be some difference in the background mortality between the two experiments (which were
done at different times of the year), and it is generally a good idea to use the value relevant
for the current control situation.

File: propiconazole_constant_val_SD_1

set: 1, Control set: 1, close pulses set: 1, wide pulses set: 1, constant
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Figure 13: Standard plot for the validation data set. Note that the only thing that is fitted
here is the background hazard rate on the control treatment.

The comparison between model and independent data is made with the same type of
figures as for the calibration: a standard plot of the state variables versus time (Fig. 13)
and a predicted-observed plot (Fig. 14). Additionally, the same goodness-of-fit measures
as for calibration are printed on screen:

Following data sets are loaded for validation:
set: 1, file: propiconazole_pulsed_linear.txt
Goodness of fit measures for validation
Special case: stochastic death (SD)

Model efficiency (NSE, r-square) : 0.5214
Normalised root-means-square error (NRMSE): 14.821 ¥
Survival probability prediction error (SPPE) for each treatment

Data set treatment value
1 Control +0.00623 %
1 close pulses +14.8 7%
1 wide pulses +11.9 %
1 constant -12.9 %

Warning: these measures need to be interpreted more qualitatively
as they, strictly speaking, do not apply to quantal data
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set: 1 set: 1

File: propiconazole_constant_obspred_val_SD_1
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Figure 14: Predicted-versus-observed plots for survival probability (left) and number of
deaths in each time interval (right). Error bars on predicted survival probability are the
CI resulting from the parameter uncertainty. Dotted lines mark a deviation of 20% from
the 1:1 line, which can help to guide the eye.

Clearly, the correspondence of the model to the data is not as good as for the calibration.
The CI on the observed survival probabilities almost overlap with the green bands on the
model predictions. However, what is more interesting is that the model predicts a pattern
with a clear change in survival at each pulse, which is not obvious from the data (the
second pulse does not have a clear impact; Fig. 13).!* Another interesting point is seen for
the constant exposure scenario: the model predicts no mortality other than background,
but the data show a clear increase in mortality by the end of the test (which is not seen in
the control treatment). Taken together with the dose-dependent mortality in the low doses
for the calibration (Fig. 9), this points at the possibility for an additional mechanism of
action (acting slowly and with a lower threshold).

3.5 Prediction

The data sets. The prediction capabilities for the model are geared towards the estima-
tion of LPx values: the factor by which an entire exposure profile needs to be multiplied to
yield 2% mortality by the end of the profile. This factor can thus be viewed as a ‘margin-
of-safety’ (the higher the value, the less mortality risk). The exposure profiles are entered
as text files (the standalone software has an input grid for the exposure profiles as well),
in a simple tab-delimited two-column format without headers. The first column contains
time points (in days) and the second the exposure concentration (in the same unit as used
for the calibration!). As with the calibration and validation data, an inspection plot is
made as in Figure 15.

Batch-wise screening. In practical application of GUTS in risk assessment of pesti-
cides, we expect that there is a common need to screen a large number of exposure profiles

1 Although the fact that the calibrated model overestimates the mortality in these cases may be impor-
tant for risk-assessment applications.
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Figure 15: Inspection plot for one exposure profile (scenario ‘apple R1 pond’).

to see where the problems will be. Therefore, the openGUTS software contains the possi-
bility to perform such a screening automatically (in a batch process). The user selects the
input profiles (text files), and the model runs through them one by one and calculates LP50
and LP10. The final result is displayed on screen as a table (unsorted in the standalone
software, and sorted on LP50 in the Matlab version):

Starting batch processing ...

Running through scenarios (10): 1 2 3456 7 8 9 10

LPx values, scenarios ordered by descending risk (LP50)
Special case: stochastic death (SD)

file analysed LP10 LP50
cereal_D1_ditch 2.29 2.65
cereal_D5_pond 11.0 11.7
cereal_D4_pond 11.1 11.7
cereal_D3_ditch 8.59 12.3
apple_R1_pond 15.9 16.7
cereal_D1_stream 13.6 20.2
cereal_R4_stream 30.6 38.4
apple_R2_stream 31.8 43.4
cereal_D5_stream 114. 193.
cereal_D4_stream 120. 204.

These are the same values as given in the EFSA opinion [2], Table 4. However, the
authors of the opinion made the error that the FOCUS profiles were given in pg/L whereas
the calibration was done on exposure concentrations in gmol/L. I did not make a correction
here, to demonstrate that the openGUTS software gives the same values as the authors of
the opinion derived. However, it shows how easy it is to make a mistake here.

The LPx values in batch processing are calculated without ClIs. This is done to increase
speed, and under the assumption that CIs will only be needed when looking at a smaller
number of profiles one-by-one. The Matlab version does offer the option to calculate Cls
in batch processing, and saves plots in the output directory, in the standard format. Two
examples are provided in Figure 16. These examples are not that interesting, as the main
pulse exposure event does all of the mortality.
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File: propiconazole_constant_pred_cereal_D1_stream_SD File: propiconazole_constant_pred_cereal_D1_ditch_SD
set: 1, cereal_D1_stream, MF=13.6 set: 1, cereal_D1_stream, MF=20.2 set: 1, cereal_D1_ditch, MF=2.3 set: 1, cereal_D1_ditch, MF=2.6

[N
S o

exposure conc. (uM)
S &

exposure conc. (UM

L

o
o o

(uM)
3
8

N
S
o

>
S

E
|

o

scaled damage
>
scaled damage (uM)

.

|
|

o
®

o

®

@
@

survival prob. (-)
o o o
=

survival prob. (-)
©

o < o
ES

©

o
o
o

100 200 300 400 0 100 200 300 400 100 200 300 400 0 100 200 300 400
time (days) time (days) time (days) time (days)

o

Figure 16: Output plots for two exposure profile (scenario ‘cereal D1 stream’ and ‘cereal
D1 pond’). The header of the columns show the multiplication factor applied (and hence
specify LP10 and LP50).

In-depth assessment. We can also make detailed calculations for one profile: calculat-
ing LPx values with CIs, and making plots as well.

Following exposure profiles are loaded for predictions:
set: 1, file: apple_R1_pond.txt
Results table for LPx (-) with 95% CI: apple_R1_pond
Special case: stochastic death (SD)

LPx best CI

LP10: 15.9 ( 14.8- 16.5)
LP50: 16.7 ( 15.7- 17.3)

Time required for the LPx calculations: 15 mins, 55.8 secs

The standard plot is given in Figure 17, but also a kind of dose-response plot is made
in Figure 18. The x-axis has the multiplication factor for the profile and the y-axis the
survival probability at the end of the profile. Clearly, one can read the LP10 and LP50
from this plot (with their CIs), but also judge how far one is away from a certain trigger
value for the LPz.

Extra: test design. In principle, the prediction mode can also be used to design further
testing. For example, after calibrating the model for constant exposure, the prediction
mode can be used to select useful pulse-exposure treatments for a validation test. This
is easier to do in the Matlab version, and is demonstrated in the main script (BLOCK 7).
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File: propiconazole_constant_pred_apple_R1_pond_SD
set: 1, apple_R1_pond, MF=1 set: 1, apple_R1_pond, MF=15.9 set: 1, apple_R1_pond, MF=16.7
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Figure 17: Detailed result plot for one exposure profile (scenario ‘apple R1 pond’), including
the survival due to the unmodified profile (MF=1) in the left panel.

For example, we can take two pulse scenarios, each with two pulses, with an exposure
concentration of 10 pmol/L. In Figure 19, the predictions are shown. I attempted to
create carry-over toxicity by taking the close pulses within the DRT95. However, there
will be little carry-over toxicity as a 1-day pulse is already close to sufficient for achieving
steady-state.

3.6 Conclusions on this data set

The calibration data set for this case study is rather straightforward, in that it allows all
parameters to be identified with nicely defined Cls. The validation raises some questions;
the performance of the calibrated model is not bad, but not as good as one would like
to see. However, it is good to realise that these experiments have been performed with
field-collected animals, which were collected and tested at a different time of the year in
both experiments. It is therefore possible that the GUTS model parameters are somewhat
different in both experiments.

The calibrated model largely overestimated toxicity in the validation test, so it seems
to represent a worst-case approach. However, there are indications that prolonged expo-
sure to low concentrations triggers another mechanism of action. This was indicated by
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Figure 18: Survival probability versus the multiplication for one exposure profile (scenario
‘apple R1 pond’), including 95% CI.

the dose-related mortality in the low doses in Figure 9, and confirmed in the validation
experiment with prolonged constant exposure in Figure 13. Is this deviation relevant for
a risk assessment? For exposure scenarios with one short dominant exposure pulse, as in
Figure 16, such slow effect at low doses are probably not relevant. However, for more pro-
longed low-level exposure. as in Figure 17, this additional mechanism of action may lead
to more mortality than predicted from the calibrated model. Simulations with an extended
GUTS model with two mechanisms of action (basically a mixtures model) can shed more
light on this, but is beyond the current version of the software. Such simulations could be
performed with the BYOM framework in Matlab (http://www.debtox.info/byom.html).
Also, dedicated experimental work (with low-dose and long exposure) may help to decide
whether this slowly developing low-dose effect is a true effect of the chemical.

It is good to note that I here only showed the SD analysis. In general, one would apply
both SD and IT to the same data set, and take the worst-case results. The I'T model does
capture the low-dose effects in calibration quite well, even though the overall fit is slightly
worse (and it also fails to capture the low-dose effect in the validation experiment). Using
both SD and IT provides more reassurance that the toxicity of the chemical is captured,
although it will not be sufficient in all cases.

Model analyses with mechanistic models will inevitably provide much more information
on the toxic effects than descriptive methods such as dose-response curves and peak or time-
weighted average concentrations. That is simply in their nature. In some cases this will
lead to more confidence in the assessment, and higher allowable exposure concentrations.
In other cases, model analysis may indicate more subtle effects of the chemical that are
missed in the first tier, and could lead to lower allowable exposure levels. However, it is
good to consider that the classical treatment of exposure profiles (using LC50 and a peak
or average concentration) would have completely ignored such subleties, and also would
not identify them.
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File: propiconazole_constant_pred_test_close_pulse_SD
set: 1, test_close_pulse, MF=1 set: 1, test_close_pulse, MF=2 set: 1, test_close_pulse, MF=2.5 set: 1, test_close_pulse, MF=5
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File: propiconazole_constant_pred_test_wide_pulse_SD
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Figure 19: Predicted effects for two pulse scenarios with different intensities. Such calcu-
lations can help design toxicity tests.
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4 Typical special cases

In this chapter, I will present several data sets that do not lead to the nicely defined cloud in
parameter space that we saw in the previous chapter. To recap: in the best case, the profile
likelihoods will look like parabola’s, and the 2-D projections like (pretty circular) ellipsoids.
In many cases, we will see deviations from this best-case situation. Such deviations are
tough on the optimisation algorithm (the parameter-space explorer) but should not worry
us overly; a lot of effort has gone into development of a robust algorithm that is able to deal
with these difficult cases. However, it is good to understand what causes these deviations,
what they mean, and when they will influence our model results. Up front, there are a
number of points to make:

1. Weirdly-shaped parameter clouds do not preclude useful parameter estimation or
predictions (the optimisation algorithm is designed to still retrieve a representative
sample). However, they may lead to increased uncertainty in the model predictions,
so it is good to consider the Cls and not just the best estimate. Further, some cases
require scrutiny as they may affect predictions under some circumstances.

2. In many (but not all) cases, weirdly-shaped parameter clouds result from data sets
that are probably not acceptable for risk assessment anyway (e.g., because there is
only one treatment with partial effects). Therefore, weird parameter clouds can be a
sign of a lack of information in the data set. However, from a modelling perspective,
there is no need to discard them (as long as the CIs are considered in the assessment).

3. Many of these cases result from, or are exacerbated by, the fact that the test was done
at constant exposure. The EFSA opinion [2] prescribes validation of the calibrated
model with pulse-exposure tests. Together, tests at constant and pulsed exposure
provide a wealth of information for parameter estimation. If the two sets of tests are
consistent, it makes scientific sense to combine them for making predictions. This
will deliver model predictions with the greatest degree of accuracy.

4. Beautifully-shaped parameter-space plots do not mean that the fit is any good. And,
vice versa, awful parameter plots do not mean that the fit will be bad. Both the
parameter-space plot and the model fit to the data need to be considered in judging
the quality of the calibration.

It should be noted that considering Cls and combining data sets is, strictly speaking, not
in line with the proposed work flow of the current EFSA opinion [2].
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4.1 General: hitting bounds

Each parameter has a minimum-maximum range. In general, we like to see parameter
clouds that are well-defined and well away from these boundaries. However, it is possible
that the outer parameter cloud (blue points) runs into one of these boundaries. It may
also be that the inner cloud (green points) run into a boundary, which implies that there
are consequences for the confidence interval of the parameter (it is indicated by an asterisk
in the output for the CIs to screen). When the parameter cloud (and/or the CI) run into a
bound, this is not generally a problem for the model analysis or for the model predictions.
However, in each case, some further scrutiny of the model output will be needed. First,
it has to be established whether this behaviour has occurred with the standard settings
or with user-modified settings (in the latter case, there has to be a very good reason to
deviate from the defaults).'?

Dominant rate constant k;. When the parameter cloud runs into the lower boundary
of parameter space, this is called ‘slow kinetics’. This case is dealt with in detail in Section
4.4. When the cloud runs into the upper boundary, this is called ‘fast kinetics’, which is
dealt with in Section 4.3.

Threshold parameter m,,. Running into the lower boundary could signify ‘slow kinet-
ics’. Check whether k; is also going to low values and whether there is strong correlation
between m,, and kq (if there is, see Section 4.4, although generally, k; will hit its bound
first). If this is not the case, the threshold is just very low (and possibly not significantly
different from zero). The openGUTS software does not allow the threshold to be set to
zero, but it can be tried whether lowering the lower bound of m,, leads to a better fit. In
general, it should not, and the parameter cloud can be used for model predictions.

Running into the upper boundary is not expected. The parameter cloud may be ex-
tremely close to that bound under ‘single-dose runaway’ for SD (when there are only effects
at the highest dose), which is discussed in Section 4.5. Furthermore, it could happen under
IT, when the highest treatment in the test produces only little effect. In the latter case,
the upper boundary can be set higher, although it should be questioned whether the data
has sufficient information for the purpose that it is used for.

Background hazard rate h,. Running into the lower boundary signifies that there is
no control mortality. With the default settings, setting the lower boundary to even lower
values will not change the fit. Therefore, the results can be used as is.

Running into the upper boundary implies that the data set suggests very high control
mortality. This could obviously be caused by high observed mortality in the control (which
places question marks on the validity of the test), or because a poor fit in the treatments
is compensated for by increasing the background mortality to unrealistic levels. The latter
case should be avoided, and it is better to fix the background hazard rate to the controls
(although this will likely lead to an unconvincing model fit).

12PJease note that the standalone version of openGUTS does not plot the bounds in the parameter-space
plots. The Matlab version shows them as thick blue lines.
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Killing rate b,. Running into the lower boundary is not expected. That would signify
that exposure above the threshold will lead to minimal effects, relative to the control. If
the default setting of the boundaries indeed are limiting, it may be opportune to lower the
minimum bound to see if a better fit results.

Running into the upper boundary could signify ‘slow kinetics’, which is treated in
Section 4.4 (although generally, k; will hit its bound first), or ‘single-dose runaway’, which
is treated in Section 4.5. In all cases, it is unlikely that a better fit will result by increasing
the upper boundary.

Spread of threshold distribution F;. Running into the lower boundary means that
there is basically no difference in sensitivity between individuals: when the damage level
exceeds the threshold, all animals will die immediately. This is (at least theoretically)
possible, so running into this boundary does not cause any problems.

Running into the upper boundary means that there are large differences in sensitivity
among individuals. This could happen, and it is a good idea to increase the maximum
bound to make sure that the inner rim (green points) does not hit the bound anymore.
For standardised laboratory test, such large difference are not expected and should trigger
further scrutiny into the data set and the goodness-of-fit of the model.
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4.2 Islands in parameter space

Data set. The data set here is for dieldrin in guppies. This set was used in the original
publication of the hazard model for survival by Bedaux and Kooijman [1], and was also used
as case study in the GUTS e-book [4]. It is a rather extensive data set with 7 treatments
(plus a control), 7 days of observations, and 20 individuals per treatment. This data set is
available from the example files for the openGUTS software.

Analysis type. The SD model is applied, fitting background hazard along with the other
parameters (hence, 4 parameters are fitted).

Parameter space. The plot of parameter space (Fig. 20) reveals a small ‘island’ in
parameter space (isolated green dots separate from the main cloud of green points). This
is reflected in the profile for m,, as a local minimum (an extra ‘stalactite’ in the plot, left
of the best fit), and a small drop in the profile for h;, close to the value of zero. Also, the
estimate for h;, runs into its lower boundary (basically no background mortality), which
should not concern us.
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Figure 20: Final plot of parameter space for dieldrin in guppies, using the SD model and
fitting hy,.

Cause of this behaviour. This behaviour results from the fact that the data set allows
two explanations for the mortality at lower doses. The best fit treats that mortality as
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background (high values for h, and m,). This fit is shown in Figure 21. However, an
alternative explanation is that this mortality is actually caused by the chemical (h; close
to zero, and low value for m,,). This latter explanation provides a poorer fit than the first
one, but is not significantly worse.

File: dieldrin_guppy_cal_SD_1
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Figure 21: Model fit for dieldrin in guppies, using the SD model and fitting h;,.

Consequences. The CIs for m,, and h;, are broken sets, rather than a single continuous
interval. The model will report the total interval, i.e., the widest continuous interval that
catches all confidence sets. Under the heading “Extra information from the fit”, the screen
output will also report:

Confidence interval for parameter mw is a broken set.
Confidence interval for parameter hb is a broken set.

The fact that there can be islands of confidence, rather than continuous ellipsoids, has
been one of the reasons for using a rather elaborate algorithm for optimisation and scanning
of parameter space. The occurrence of such islands is not a problem for the parameter
estimates or the subsequent analyses; the optimisation is completely acceptable. The
sample from parameter space that is used for uncertainty propagation will contain these
islands (the parameter sets within the dotted horizontal lines are used for propagation),
and hence the model predictions will represent the complete uncertainty in the parameter
values. The uncertainty in the model predictions will likely also contain islands. However,
these are not shown. For example, the green uncertainty bands in Figure 21 are single
bands, whereas they in reality might actually be two bands per model curve. The CIs on
model predictions thus cover the maximum width of the actual CI without showing any
islands in there.
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For some exposure scenarios (especially those with low prolonged exposure), the small
island at low m,, might produce more mortality than the large cloud at high m,,. The lower
part of the CI on LCx and LPx values might thus represent this island. If the lower part
of the CI causes concern, it is possible to provide more insight by setting up an additional
experiment with low-dose prolonged constant exposure. This again stresses the importance
of considering the CIs as well.
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4.3 Fast kinetics

Data set. The data set here is for methomyl in fathead minnows, and is part of the
fathead minnow database (see [6]). It is a 4-day test, but additional measurements are
available within the first day of the test (after 1 and 2 hours). There are 5 treatments (plus
a control), and 20 animals per treatment. This data set is available from the example files
for the openGUTS software.

Analysis type. The SD model is applied, fitting background hazard along with the other
parameters (hence, 4 parameters are fitted).

Parameter space. The plot of parameter space (Fig. 22) shows more-or-less parabolic
profiles for m,,, hy and b,,, but not for k;. The dominant rate constant runs into its upper
bound (blue vertical line, plotted in the Matlab version only). It is also clear from the
2-D plots of the parameter cloud (first column, below the profile for ky) that the sample
(including the best fit) is squashed into the upper boundary. This is also flagged in the
output to screen:

kd best: 1105. ( 270.5 - 1105.%) 1/d fit: 1 (log)

* edge of 95}, parameter CI has run into a boundary

For hy, the sample is running into its upper boundary. However, this only concerns
the blue points, and not the green ones (only the latter ones are used for uncertainty
propagation).

Cause of this behaviour. This behaviour results from the fact that the scaled damage
dynamics are becoming very fast in the optimisation. This implies that the data suggest
that steady state between the external concentration and the damage level is reached very
rapidly, and might as well be instantaneous. This causes a problem in optimisation: if
kq = 1000 d~1 fits well, kg = 1 -10° will also fit well, and k; = oo as well. In fact, there
is no natural upper limit to the value of k4, and, without setting some boundary, the
optimisation routine would run away to infinity.

Consequences. We cannot obtain an estimate for the upper CI of k;, which might as
well be infinite. However, as long as we have found the best estimate (that we know the
lowest value for the minus-log-likelihood), the lower boundary will be representative. The
profile for k4 in Figure 23 suggests that the profile can decrease further if we increase ky
beyond the current boundary. It is possible to manually extend the search range for kg,
which might yield a slightly better optimum (though hardly any changes to the visual
correspondence to the data), which will shrink the Cls of all parameters a bit (if the
optimum improves, some parameter sets that are currently within the CI will then be not
good enough anymore). The current analysis will thus be slightly worst case in terms of
the width of the ClIs.

33



File: methomyl_minnow_parspace_SD (03-May-2019)

joint 95% CI
@ inner rim (df=1)
O  bestfit set
space bounds

joint 95% CI
© inner rim (df=1)
cut-off (df=1)
profile refine

loglik ratio
o - N w B

A

2004

&

22 24 26 28 3 12 125 13 135 14 0.02 0.04 0.06 -09 -08 -07 -06 -05
kd (log) mw hb bw (log)

Figure 22: Final plot of parameter space for methomyl in fathead minnows, using the SD
model and fitting hy.

For the predictions, the fact that k4 runs to infinity is not generally a problem. The LCx
values will be representative. For the LPx, the estimates will also be fine, although some
care will be needed if we analyse an exposure profile with exposure peaks on an extremely
short time scale. The default upper boundary for k; is set such that 95% of steady state
will be achieved in half an hour. Since the FOCUS profiles are on an hourly resolution,
this should allow the model to respond adequately to short peaks. In this case study,
there already is an observation on survival after one hour, which automatically prompts
an increase in the search range for k;: the maximum boundary is set at a point where 99%
of steady state is reached at one-tenth of the first observation time. This is done because
such early observation times allow the identification of very high values for k4. In this
case, the upper boundary of k,; is so high that we do not need to worry when entering an
exposure profile with changes on a very short time scale.

In short: the optimisation is representative and can be used for model predictions.
However, the maximum value of k; has to be judged in relation to the time resolution of
the exposure profile. In a general setting (when using FOCUS profiles), the default settings
of the search ranges are designed to provide representative results, even when the fit runs
into fast kinetics.

In this case study, more concern should be given to the fit (Fig. 23), which is rather
poor. The model fit attempts to capture the high-dose effects by increasing background
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mortality to rather unrealistic values, and still ends up with a rather poor representation
of the effects patterns. There seems to be a rapid onset of mortality followed by a slower
progression (and even a stop of further mortality at some point in the highest two doses).
The overall fit is not very convincing.
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Figure 23: Model fit for methomyl in fathead minnows, using the SD model and fitting hy,.
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4.4 Slow kinetics

Data set. The data set here is for fluorophenyl in fathead minnows, and is part of the
fathead minnow database (see [6]). It is a 4-day test, with 5 treatments (plus a control),
and 10 animals per treatment. This data set is available from the example files for the
openGUTS software.

Analysis type. The SD model is applied, fitting background hazard along with the other
parameters (hence, 4 parameters are fitted).

Parameter space. The plot of parameter space (Fig. 24) shows some interesting pat-
terns. Most strikingly, strong correlations between k;, m,, and b,, with the green points
for kg4 running into the lower boundary (hence slow kinetics). For m,,, we see a rather sud-
den switch in the profile at some low value, and for b,, something similar at a high value.
The background hazard rate h, runs into its lower boundary (basically no background
mortality), which should not concern us.

File: fluorophenyl_minnow_parspace_SD (21-May-2019)

joint 95% CI
@ inner rim (df=1)
O  bestfit set
space bounds
joint 95% CI
© inner rim (df=1)
cut-off (df=1)
profile refine

loglik ratio
o - N w B

0.04
0.03

2002

-
. |

-2 -1 0 -2 -1 0 0 0.01 0.02 003 0.04
kd (log) mw (log) hb

Figure 24: Final plot of parameter space for fluorphenyl in fathead minnows, using the SD
model and fitting hy.

Slow kinetics is hard on the optimisation routine. The threshold m,, is, by default,

estimated on normal scale, which is efficient in most cases. However, as a low k; will drag
m,, to very low values, a log-scale is needed. The optimisation routine will recognise that
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the parameter space is moving towards slow kinetics, will stop the analysis, and restart
with m,, on log-scale.’® The output to screen looks like this:

Following data sets are loaded for calibration:
set: 1, file: slow kinetics fluorophenyl.txt

Settings for parameter search ranges:

kd bounds: 0.001641 - 143.8 1/d fit: 1 (log)
mw bounds: 0.0004909 - 8.306 uM fit: 1 (norm)
hb bounds: 1e-06 - 0.07 1/d fit: 1 (norm)
bw bounds:  0.003139 - 3.986e+04 1/(uM d) fit: 1 (log)
Fs bounds: 1 - 1 [-] fit: 0 (norm)

Special case: stochastic death (SD)

Starting round 1 with initial grid of 16128 parameter sets
Status: best fit so far is (minloglik) 38.0953

Starting round 2, refining a selection of 1871 parameter sets, with 37 tries each
Status: 486 sets within total CI and 54 within inner. Best fit: 37.7386

Slow kinetics indicated: parameter-space explorer is restarting with these settings:

kd bounds:  0.001641 - 18.11 1/d fit: 1 (log)
mw bounds: 0.0004909 - 8.306 uM fit: 1 (log)
hb bounds: le-06 - 0.07 1/d fit: 1 (norm)
bw bounds: 0.01369 - 3.986e+04 1/(uM d) fit: 1 (log)
Fs bounds: 1 - 1 [-] fit: O (norm)

Special case: stochastic death (SD)

Starting round 1 with initial grid of 16128 parameter sets

Cause of this behaviour. This behaviour results from the fact that k; becomes very
low in the optimisation. Because of the scaling of damage in GUTS, this causes a series
of problems. A low value for k; implies very slow increase in damage over time, in fact,
the damage level will increase almost linearly in time (see also the damage plots in Fig.
25). This implies that the scaled damage levels are very low (compared to the external
concentrations) for most of the test duration. As a consequence, the threshold m,, must be
very low, and the killing rate b,, very high, to get effects on survival. The lower k; becomes,
the lower m,, and the higher b,,. Therefore, these strong correlations are inherent in the
model when low values of k; are consistent with the survival patterns in the data set.
With all these parameters running away to zero or infinity, one of them is going to hit
its boundary first. In most cases, that will be k; (as it is in this case). When k, hits its
lower boundary, lower values of m,, will produce a bad fit as the fit cannot be compensated
by lower values of k; anymore. Hence the switch in the profile for m,, around a value of -2

13In the output report of the standalone software, the search ranges are reported as they were set after
the restart.
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(on log scale). The same situation occurs for b,, at a high value (around 1.5). For kg, the
model output will show that this parameter runs into its lower boundary:

kd best: 0.2606 ( 0.001641% - 1.035 ) 1/d fit: 1 (log)
mw best: 1.536 ( 0.007052 - 2.789 ) uM fit: 1 (log)
hb best: 1.000e-06 ( 1.000e-06* - 0.01641 ) 1/d fit: 1 (norm)
bw best: 0.2088 ( 0.06640 - 38.28 ) 1/(uM d) fit: 1 (log)
Fs best: 1.000 ( NaN - NaN ) [-] fit: 0 (norm)

* edge of 95) parameter CI has run into a boundary
(this may also have affected CIs of other parameters)

Consequences. What does this mean for the CIs on the model parameters? For kg,
it means that the CI should be interpreted as half-open (the lower boundary is zero, or
minus infinity on log-scale). The last sentence of the output to screen is crucial here:
“this may also have affected CIs of other parameters.” In this case, because of the strong
correlations, the lower CI of m,, and the upper CI of b,, are affected. Even though the model
will report nicely defined values here, they should be interpreted as half-open intervals as
well. Therefore, the CIs should be summarised as 0 < k4 < 1.035, 0 < m,, < 2.805 and
0.06643 < b,y < o0.

The fit to the data set does not look particularly troublesome (Fig. 25), which means
that we can use this data set for model predictions. The fact that three of the model
parameters are running away, and are unbounded at one end of their CI, should not concern
us: due to the strong correlations, the model behaviour will be very similar for all parameter
sets with low k; values. The uncertainty, and the strong correlations, are part of the
parameter cloud (the green points), and will be propagated to the model predictions. Note
that the ClIs on the predicted scaled damage are very wide. This is a consequence of the
strong correlations between the parameters, and is of no concern (the Cls on predicted
survival are more relevant, and they are quite reasonable).

In combination with exposure profiles that have long periods of (low) exposure over
the year, or many peaks, slow kinetics will lead to low values for the LPz. The reason is
that there is very little elimination/damage repair and all exposure events will basically
add up. In such situations, a GUTS analysis can easily lead to lower allowable exposure
levels than a 4-day LC50 combined with a peak concentration. In this particular example,
the best estimate for k, is still well defined even though the lower bound of the CI is not.
In this case, k; = 0 would yield only a marginally worse fit. Therefore, it makes sense to
carefully consider the CIs on the model predictions, as they may include very low values
for the LCx and LPx. In this case, for the monitoring profile as used in the GUTS ring
test, the CIs on the LPx values span a range of more than a factor of 20:

Results table for LPx (-) with 95} CI: profile_monit
Special case: stochastic death (SD)

LPx best CI

LP10: 2.15e+04 (1.28e+03 - 2.95e+04)
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Figure 25: Model fit for fluorphenyl in fathead minnows, using the SD model and fitting
hy.

LP50: 2.77e+04 (1.64e+03 - 4.31e+04)

Figure 26 shows the predictions for LPx with the corresponding survival plots. In
this example, the CIs on the model results are plotted as well (which is not possible in
the standalone version). Clearly, at the LP10, the uncertainty is so high that survival
probability could easily decline to almost zero. This is also reflected in the large Cls for
the LPz given above (and will also be clear from the plot of survival versus multiplication
factor as in Fig. 18). The possibility of low LPx values, and low survival at the LP10,
relates to the possibility of very slow kinetics. If slow kinetics can be ruled out (e.g., by
information from pulsed-exposure tests), the ClIs will be much decreased. Slow kinetics is
associated with low values for damage (hence the large green area under the solid line in
the damage plot of Fig. 26). However, it is also associated with low values for m,, and
high values for b,,, the net result being that toxic effects can become quite severe when
there is prolonged exposure.

The current lower value for the search range of k,; is defined, rather arbitrarily, as the
rate constant that will lead to 95% of steady state after 5 years of constant exposure.
This is pretty slow, probably biologically unrealistic (as it would be hard to imagine a
toxicant for which repair or elimination is completely impossible), and should not affect
extrapolation to 485-day FOCUS profiles. However, for extremely long-lived species, and
extrapolation to much longer exposure profiles, the lower boundary of k; may need to be
reconsidered. When strong correlations, typical of slow kinetic, are seen, but either m,, or
by, is hitting its boundary before k,, it makes sense to modify the boundaries of m,, and/or
b, to make sure that k; will hit its lower boundary. That ensures that the interpretation
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Figure 26: Model predictions for fluorphenyl in fathead minnows, using the SD model and
fitting hy. The wide Cls, stretching to low values for damage and survival, are the result
of the possibility for slow kinetics.

of “95% of steady state after 5 years” still applies.

Slow kinetics is the most troublesome case to deal with in GUTS analysis, so it is
important for users of (results from) openGUTS to recognise this case and to consider it
with a bit of extra care.

Even though the example above deals with SD, it is good to note that slow kinetics
also occurs for IT (in fact, it will be more common than for SD); an example is shown
in the GUTS e-book [4] for the dieldrin-guppy case study. Difference is that IT does not
have b,, as model parameter, and that F; will not be correlated to k;. The only striking
correlation will thus be between k; and m,,.

When slow kinetics is missed by the optimisation algorithm. The optimisation
algorithm of openGUTS will check for slow kinetics during the main rounds of sampling.
If slow kinetics is detected, it will restart the optimisation with m,, on log-scale. However,
there are cases when this check fails; an example is shown is Figure 27. There is a clear
correlation between b,, and kg4, indicative of slow kinetics. The correlation between m,,
and k, is obscured since the latter is on log scale while the former is on normal scale (same
for the correlation between m,, and b,). In this case, the optimisation still produces the
correct best fit and provides a reasonable coverage of parameter space. Nevertheless, it
would be best to repeat the optimisation with m,, set manually to log scale. Note that
you can here spot problems with the sampling in the parameter-space plots as there is a
distinct unevenness in the points in the profiles.
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Figure 27: Plot of parameter space for a data set where slow kinetics was not identified by
the optimisation algorithm.
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4.5 Single-dose runaway

Data set. The data set here is for flucythrinate in fathead minnows, and is part of the
fathead minnow database (see [6]). It is a 4-day test, with 5 treatments (plus a control),
and 20 animals per treatment. This data set is available from the example files for the
openGUTS software.

Analysis type. The SD model is applied, fitting background hazard along with the other
parameters (hence, 4 parameters are fitted).

Parameter space. The plot of parameter space (Fig. 28) shows several nasty features.
The 2-D projections of the parameter cloud are nothing like ellipsoids; they are ragged,
and several have a sort of tube attached. Furthermore, the profile plots clearly show that
sampling has been poor in the areas where k; and b,, are high.
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Figure 28: Final plot of parameter space for flucythrinate in fathead minnows, using the
SD model and fitting h;,.

This behaviour is particularly tough on the optimisation routine. It has a lot of trouble
reaching an acceptable sample, and triggers several rounds of additional sampling and
profiling. Even after several rounds of extra sampling, it fails to fill the open areas in the
profile plots in Figure 28, and also warns about that at the end of the optimisation process:

Starting round 6, creating the profile likelihoods for each parameter
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Extending profile for mw to higher parameter values
Extending profile for hb to lower parameter values
Extending profile for bw to higher parameter values
Finished profiling, running a simplex optimisation on the best fit set found ...
Status: 20546 sets within total CI and 5533 within inner. Best fit: 37.0639
Profiling has detected gaps between profile and sample, which requires extra sampling rounds.

Starting round 7, (extra 1) refining a selection of 311 parameter sets, with 112 tries each
Status: 23763 sets within total CI and 6914 within inner. Best fit: 37.0639

Starting round 8, (extra 2) refining a selection of 464 parameter sets, with 75 tries each
Status: 25176 sets within total CI and 7429 within inner. Best fit: 37.0639

Starting round 9, (extra 3) refining a selection of 390 parameter sets, with 89 tries each
Status: 26539 sets within total CI and 7956 within inner. Best fit: 37.0639

Starting round 10, (extra 4) refining a selection of 324 parameter sets, with 108 tries each
Status: 27698 sets within total CI and 8340 within inner. Best fit: 37.0639

Starting round 11, (extra 5) refining a selection of 282 parameter sets, with 124 tries each
Status: 29005 sets within total CI and 8773 within inner. Best fit: 37.0639

Exiting parameter space explorer, but still 220 sets flagged (too much distance between profile and sample).
Check plot.

Cause of this behaviour. This behaviour results from the fact that there is basically
only one treatment (with constant exposure) showing partial effects (Fig. 29). This im-
plies that the threshold m,, can creep up, arbitrarily close, to the concentration in that
treatment. The closer m,, gets to the concentration in the treatment, the higher b,, needs
to be to produce sufficient mortality (the hazard rate is proportional to the difference be-
tween the scaled damage and the threshold, and the scaled damage level will be close to
the external concentration). The result is a rather odd correlation between b,, on the one
hand, and the distance between m,, and the concentration in the treatment on the other.
Proper sampling would perhaps be easier to achieve by using a kind of reverse log-scale for
My, counting back from the concentration in the treatment with partial effects. However,
programming such a sample scheme would be more trouble than it’s worth.

The strong correlation between b,, and ‘m,,-minus-concentration-T4" produces the tube
in the 2-D plot for b,, versus m,: as m,, runs into the concentration of treatment T4, b,
goes to infinity. The tube in the plot of m,, versus k; also relates to this, as running m,,
close to treatment T4 requires fast kinetics.

Consequences. Due to this behaviour, the upper bound of the CI for b, cannot be
established. Despite the fact that parameter space is rather rough, and not sampled in a
very detailed way, especially in the tails of k; and b,,, the sample is still representative for
making model predictions. The parameter sets in the section of parameter space where
sampling is poor will all lead to the same model behaviour: no mortality as long as damage
is below the threshold, and immediate death when it is above. Therefore, there is really
no need for a detailed coverage of this part of parameter space.

The data set, in this case, contains only limited information about the parameter values.
As can be seen in the model fit (Fig. 29), there is basically only one treatment with partial
effects. This is not necessarily a reason to discard the data set, as the sample will still be
representative of the uncertainty. However, it is again a good idea to consider the CIs on
the model predictions, as they may be very wide.
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Figure 29: Model fit for flucythrinate in fathead minnows, using the SD model and fitting
hy.
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4.6 Either SD or IT fits better

Data set. The data set here is for bromacil in fathead minnows, and is part of the
fathead minnow database (see [6]). It is a 4-day test, with 5 treatments (plus a control),
and 40 animals per treatment.

Analysis type. Both the SD and I'T model are applied, fitting background hazard along
with the other parameters (hence, 4 parameters are fitted).

Parameter space. The plots of parameter space are shown in Figures 30 and 31, and do
not look very disturbing. For SD, we see fast kinetics (k; — 00), but otherwise everything
looks fine. More interesting are the fits in Figures 32 and 33. The fit for SD does not look
very convincing (though model efficiency is quite reasonable at 0.884), whereas the fit for
IT is almost perfect (model efficiency 0.997).
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Figure 30: Final plot of parameter space for bromacil in fathead minnows, using the SD
model and fitting hy,.

Cause of this behaviour. In this case, I'T fits much better because the survival pattern
over time shows a specific pattern: a decrease in mortality that stops before killing all
individuals. This levelling off of mortality (even though exposure has been constant) is
typical for IT, and cannot be matched by SD.

Consequences. In this case, it would be tempting to only use I'T for model predictions
and discard SD, as it clearly does not capture the patterns in the data set. However, this
pattern can also occur when the animals gradually develop resistance to the chemical (e.g.,
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Figure 31: Final plot of parameter space for bromacil in fathead minnows, using the IT
model and fitting hy.

by inducing biotransformation enzymes). It would be impossible to settle this dispute using
this data set alone, but the good news is that an I'T analysis will generally be representative
(possibly even worst case) in this situation (under IT, the surviving individuals will be the
tolerant ones). Furthermore, an additional toxicity test with time-varying exposure will
likely shed more light on the underlying mechanisms of toxicity.
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Figure 32: Model

set: 1, Control

exposure conc. (mM)

scaled damage (mM)

set:1,T1

File: bromacil_minnow_cal_SD_1

set: 1,12

set: 1,73

set 1,4

-1

set:1, 75

02
0
T T T T T 1T T
zos Ty
Sos
5
S 0a
H
5
302 L 4 L
0
o 1 2 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 2 3 4
time (days) time (days) time (days) time (days) time (days) time (days)

fit for bromacil in fathead minnows, using the SD model and fitting h,.

set: 1, Control

exposure conc. (mM)

scaled damage (mM)

set:1,T1

File: bromacil_minnow,_cal_IT_1

set 1,12

set1,T3

set1,T4

sel:1, TS

—_—T

b

L

o 1 2 3
time (days)

2

o 4 0

2
time (days)

2

3
time (days)

2

o 1 2 3 4
time (days)

0 2 3
time (days)

4 0

102 3
time (days)

Figure 33: Model fit for bromacil in fathead minnows, using the I'T model and fitting hs.
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4.7 The Maltese-cross anomaly

Data set. The data set here is for dieldrin in Guppy as used in [1], and available from the
example files for the openGUTS software. The original data set, with a regular analysis,
will not show this particular anomaly. However, I will modify things a bit to make it come
out. I will use the unmodified data set while fitting only 2 parameters, and a modified one
where all survivor numbers are multiplied by 1000 to mimic a situation where uncertainty
is very low (and the relevant cloud in parameter space very small).

Analysis type. The IT model is applied for the regular data set, keeping h;, fixed to the
value fitted on the controls, and fixing k4 to its best value in an unconstrained fit (hence,
2 parameters are fitted). The SD model is applied to the modified data set (many more
individuals per treatment), fitting background hazard on the controls (hence, 3 parameters
are fitted).

Parameter space. The plots of parameter space are shown in Figures 34 and 35, show-
ing some weird Maltese-cross-like patterns. Other shapes are possible, but they will all
be characterised by bands in the plots, and large chunks of parameter space apparently
missing. In the text output from the optimisation, you will see that the regular sampling
rounds end with very few accepted parameters (for 3 fitted parameters, the algorithm
wants to have at least 5000 parameters in the total cloud, and 2000 in the inner). This
trigger lots of additional sampling (from very few points). The output to screen belonging
to Figure 35, after the basic sampling rounds (and before profiling) reads:

We have now done 12 rounds without reaching the stopping criterion ... we stop here!
Finished sampling, running a simplex optimisation ...
Status: 26 sets within total CI and 14 within inner. Best fit: 163416.694

Cause of this behaviour. If you look at the axes in Figures 34 and 35, it is clear that
the final parameter cloud is very small, relative to the starting cloud. This causes problems
in the genetic algorithm of openGUTS. The algorithm is not geared towards such small
clouds, as it is optimised for larger (possible oddly-shaped) parameter clouds. For small
clouds, it does not contract fast enough in the initial rounds, which implies that all of the
‘filling in’ of the cloud happens in extra sampling rounds (which are optimised to fill gaps
and not large areas). The cause of this behaviour is thus with the genetic algorithm used
in openGUTS, and not an inherent problem with the data set.

This behaviour can also occur when attempting to fit parameters like k; and b, on
normal scale, while their ranges span multiple orders or magnitude. The well-behaved
propiconazole data set of Section 3.1 will produce a very nice example of this anomaly for
SD when all parameters are fitted on normal scale (hence modifying the default settings
for the algorithm). In this case, the pattern is even more extreme, and more flower, or
fireworks, shaped (Fig. 36).
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Figure 34: Final plot of parameter space for dieldrin in guppies, using the I'T model keeping
hy and k, fixed to their best value.

Consequences. In this case, the best parameter set can be trusted, as well as the Cls
on the parameters resulting from profiling the likelihood function. However, some areas of
parameter space will be ill represented in the sample for error propagation. Therefore, the
CIs on model predictions could be less reliable (though they would be very narrow anyway).
To obtain a more reliable sample, the best way to proceed is to redo the calibration with
a smaller initial parameter grid, i.e., tighter min-max ranges on the parameters, which can
be based on the information from the previous parameter-space plots.*

For the propiconazole case study in Figure 36, the morale of the story is to not change
the default settings unless you know what you are doing. Even seemingly innocent changes
can lead to a poor sample.

For an update of the model, the code could be amended to capture this situation better.
However, given that it only occurs in rather extreme and unrealistic cases, and given that
there is an effective workaround, this should not receive priority.

Complete failure of the optimisation In the most extreme version of this case, the
‘Maltese cross’ is not produced but the optimisation routine will fail completely. Generally,
this is caused by some property of the data set that allows an artificial ‘excellent fit’ in a tiny
portion of parameter space (and pretty good fits in a larger part elsewhere in parameter
space). This tiny part of parameter space may be missed during the main rounds of
mutation. When it is then spotted during profiling, the new optimum may be so much
better than the old one that none of the parameter sets from the main sample is part of
the new confidence set.

1This is one of the very few cases where changing the default parameter ranges is acceptable, and
actually advisable, to produce a representative sample from parameter space.
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Figure 35: Final plot of parameter space for dieldrin in guppies, using the SD model keeping
hy, fixed. Note that the dataset is manipulated by multiplying all survivor numbers by 1000.

When a ‘Maltese cross’ is produced the main sampling stage also fails to sample the
confidence set as it is too small. However, a few parameters sets were found, which could
then be used as basis for additional sampling rounds. However, if there is only one ac-
ceptable parameter set (the new optimum), there is nothing to base additional sampling
on.

These cases are flagged by the software with the advise to seek expert assistance. With
a careful selection of the initial parameter ranges, this global optimum can be mapped
effectively. However, the ‘excellent fit’ from this global optimum will probably always be
biologically unrealistic; real-world data sets do not yield almost-perfect identification of
the model parameters.

It is good to note that this case may also occur as a consequence of improper data
entry (e.g., entering time points in hours rather than days) or improper modification of
the ‘expert settings’ (initial parameter ranges and log settings).
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Figure 36: Final plot of parameter space for propiconazole in Gammarus pulex, using the
SD model keeping h,, fixed, and all parameters fitted on normal scale (as opposed to the

default settings where k4 and b, are on log-scale).
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