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1 Introduction

This document provides an extended explanation of the likelihood-based algorithm for
optimisation and construction of confidence intervals: here referred to as the parameter-
space explorer. This algorithm was developed specifically for the openGUTS project
(http://openguts.info/) by DEBtox Research to allow for a fully-automated analy-
sis of survival data. However, the algorithm is more widely applicable for problems
with low dimensionality (2-5 free model parameters), and was converted for the BYOM
platform under Matlab (see http://debtox.info/byom.html, it was included in the up-
date to version 5.0). This document takes elements from the openGUTS design docu-
ment (http://openguts.info/download.html), the ‘refresher’ for the DynModTox course
(https://www.debtox.info/dynmodtox.html), and the GUTS e-book [10], adds more ex-
planation, more background, and molds them into a consistent and more didactic treatise.
The algorithm applies the ‘frequentist’ (or better: likelihood-based) viewpoint (as opposed
to Bayesian), and constructs confidence intervals by profiling the likelihood function (as
opposed to a quadratic approximation).

Section 7 provides a more detailed analysis of the case study from the main text. It uses
the openGUTS software, and provides both the stochastic death (SD) and the individual
tolerance (IT) analysis. Furthermore, it compares the output to the Bayesian framework
as implemented in MORSE (https://cran.r-project.org/package=morse), which also
forms the basis for the on-line tool MOSAIC (https://mosaic.univ-lyon1.fr/guts, see
[1]).

1.1 Parameter space

A model is a simplification of a part of reality. Every model starts with a set of simplifying
assumptions, which are often translated into equations to allow them to be applied. These
equations have state variables and model parameters. State variables are the quantities
that we are interested in (things that define the state of the system), and that generally
change over time. Model parameters are properties of the system that determine how the
state variables change over time, and that are generally taken as constants. As an example,
consider the one-compartment toxicokinetic (TK) model with first-order kinetics:

dCi
dt

= kuCw − keCi (1)

The state variable is the internal concentration in the organism (Ci), which changes over
time. The model parameters are the rate constants ku and ke. The external concentration
in the environment (Cw) could be a constant, but it could also be time-varying. In any
case, it is not a state variable of the system that we describe here (which only considers
the organism), and therefore it is referred to as a ‘forcing function’; it influences the state
variable of the system, but it is not itself influenced by the state variables.

With a certain forcing Cw and a certain initial state Ci(0), the evolution of the internal
concentration over time Ci(t) is completely determined by the value of the two (constant)
model parameters. Every combination of two values will lead to a different pattern Ci(t)
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(i.e., a model curve). We can think of all possible values for the model parameters as
a ‘parameter space’. Since we here have two model parameters, parameter space is two
dimensional: each parameter combination is a point on this continuous surface (Fig. 1).

Figure 1: Each combination of two model parameters is a point in a continuous 2-D
parameter space (i.e., a plane).

When we have data for internal concentrations over time, we can attempt to find the
parameter combination that provides the ‘best match’ to these data: model fitting or model
calibration. This is generally followed by two related questions: how certain are we of these
‘best values’ (i.e., confidence intervals on model parameters), and how does this uncertainty
in model parameters translate to uncertainty in model predictions (i.e., error propagation
or confidence intervals on model predictions). Answering all of these questions requires
a proper quantification of goodness-of-fit: how can we decide when one model curve is
better than another? This requires an additional model: an error model. The error model
allows to judge the deviations between model predictions and observations, and is thereby
essential to establish the best-fitting parameter values and their confidence intervals (CIs).
It is important to realise that the error model is also a model, and that it comes with
its own set of assumptions. There are many error models to choose from, and the most
appropriate one depends on the nature of the observations; for body residues (continuous
or graded) we require a different model than for numbers of survivors (discrete or quantal).

One of the most popular error models is least squares: calculate the differences between
each observation and the model prediction at that time point (the residuals), square them,
and sum them. Lower values of the sum-of-squares (SSQ) imply a better fit of the model to
the data set. The error model thus adds a dimension to parameter space: each parameter
combination (each point in the surface of Fig. 1) will now have an associated goodness-
of-fit to the data. Our 2-D parameter-space surface thus turns into a 3-D landscape (Fig.
2). In this parameter landscape, the lowest point is our best-fitting combination of model
parameters (best-fitting, given the data set, and given that the error model is ‘true’).

How can we locate the best-fitting parameter set? In general, we will need to use
numerical routines (optimisation methods) to find the lowest point in the landscape. A
wide ranges of algorithms exist for this task. If the parameter landscape is well-behaved,
as in Figure 2, the task is simple. I call this landscape well-behaved because optimisation
routines will have little problems finding the optimum. Imagine placing a ball on the
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Figure 2: Each combination of two model parameters is a point in a continuous parameter
space. Using an error model (here least squares) adds a dimension to parameter space.
Colours go from red (poor fit) to blue (good fit).

landscape. No matter where we place the ball, it will always roll to the overall lowest point
in the landscape. However, the landscape may not always be well behaved. The actual
shape depends on the model for the system, the model for the error, and on the data set.
In almost all cases, we do not know a priori whether our optimisation problem will be
well-behaved or not. The landscape may contain multiple dips (local minima), such that
the ball may roll to a place that is not the overall lowest point in the landscape (the global
minimum). There may not even be a real dip: the landscape may slope gently down in one
direction and never reach a lowest point, such that ball will continue to roll on to ever-higher
parameter values. This latter case constitutes an identifiability problem: the data do not
contain sufficient information to constrain one or more of the model parameters. These
issues of local minima and identifiability are serious problems for model optimisation, and
this problem becomes worse when there are more free parameters. For two parameters, we
need to navigate a 3-D landscape, but for three parameters we’ll have to deal with a 4-D
landscape, etcetera.

Apart from the best-fit parameter combination, we are usually also interested in con-
fidence intervals (CIs) on these parameters: how certain can we be about the best value
of the model parameters based on the available data? It is easy to see that the CIs relate
to the shape of the parameter landscape around the best value: parameter combinations
that provide a fit that is not too much worse from the best fit will be part of a CI. In other
words, we are interested in the parameter landscape up to a certain height above the best
value. In the 2-D plane of the model parameters, we could plot ‘lines of equal SSQ’ that
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would inform about the joint uncertainty in the parameters (illustrated in Fig. 3). In this
example, the lines are elliptical, which implies a correlation between the two parameters.
The joint CI of the model parameters will be one such ellipse: all parameter combinations
within that ellipse will yield a fit that is not too much worse from the best fit. The CIs of
the single parameters will be related to the edges of one such an ellipse (explained in the
next chapter).

Figure 3: Lines of ‘equal SSQ’ plotted around the best-fit parameter combination (yellow
point).

The challenge is thus to map the parameter landscape efficiently, such that we know
the global best parameter combination and the shape of the landscape surrounding it. In
principle, we could apply brute force and calculate the goodness-of-fit for a large amount
of points in parameter space to create maps as in Figures 2 and 3. In the two-parameter
case, this is doable. If we take 100 regular points for each parameter, we can construct
a nice smooth landscape with 100 × 100 = 104 points (i.e., parameter combinations for
which we need to calculate the SSQ). However, in higher dimensions (i.e., more parameters
to fit), it becomes increasingly difficult to map this landscape efficiently. With four free
parameters (as in a typical GUTS fit), we would already need to calculate 108 SSQs (this
relates to the ‘curse of dimensionality’). And, there will be no easy way to display the five
dimensions of our landscape in one simple plot. To make matters worse, taking 100 points
for each parameter will generally not be sufficient, unless we have a clear a priori idea of
where the interesting part of parameter space is. In our toxicokinetics model of Eq. 1,
the relevant range of values for ke and ku may span several orders of magnitude, rapidly
requiring more detail than 100 points can generate.

In general, we should therefore forget about mapping and visualising the entire param-
eter landscape in detail. In higher dimensions, mapping can only be efficient if we can
narrow down the search range to where the good fits are located. In general, there will be
large parts of parameter space that contain nonsensical fits and are thereby uninteresting.
We thus could use more efficient methods to locate and zoom in on that part of parameter
space where the most reasonable fits are located. Unfortunately, the focus of almost all
existing optimisation algorithms is on finding the best-fitting parameter set, and not on
mapping out the parameter landscape around it, for the CIs. Since we generally would
like to have CIs, and since robust optimisation requires knowledge of the shape of the
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landscape anyway, it would be more efficient to combine both tasks. We will see later that
this knowledge about the parameter landscape is essential to quantify uncertainty about
model predictions as well.

As an aside, Bayesians do tend to map the parameter landscape around the best fit,
which in their framework represents the posterior distribution of the model parameters.
They often use Markov-Chain Monte Carlo (MCMC) sampling for this purpose to create a
sample from the posterior distribution, which can be plotted similarly to Figure 2, but then
as a joint probability distribution: the other way around, as higher values of the posterior
probability imply a better fit. From that sample, the best-fitting parameter set can be
found, and CIs on the model parameters can be generated. Furthermore, the sample
can be used for error propagation to model predictions (this is rather straightforward
for Bayesians due to the fact that they treat the parameter landscape as a probability
distribution). MCMC methods can also be applied for frequentist applications to map the
parameter landscape, but they have a few disadvantages. Firstly, they need a starting
point in the landscape; an incorrect starting point can leave the algorithm stuck in a local
minimum. Secondly, the aim of MCMC is not to explicitly map the landscape, but to
provide a random sample from a probability distribution. Therefore, the final sample will
contain many points close to the best value and only few in the tails. This is illustrated
in Figure 4. That is fine for Bayesians, but not so nice for frequentists. Frequentists need
to know the actual height at each sampling point (something that MCMC routines do not
automatically provide), and they need detail on the edges to calculate the joint-confidence
ellipses. Finally, MCMC algorithms do not react favourably to parameters running away
to infinity, or parameters that are strictly bounded (e.g., to values above zero or below 1),
and it is not trivial to check that the algorithm has yielded a proper representation of the
landscape (see also Section 7).

In summary, an efficient approach to frequentist optimisation requires mapping out
the parameter landscape in the relevant part of parameter space (where the best fits are
located). This map is then used to 1) find the best-fitting parameter combination, 2) to
construct CIs on the model parameters, and 3) to help error propagation to model predic-
tions. For the openGUTS project, an additional requirement for the mapping algorithm
was that it should work without input from the user (other than the data set). Most users
of openGUTS will not be experts in statistics and numerical optimisation, but this should
not preclude a robust statistical inference for any data set. However, it is impossible to
guarantee that an algorithm will work in all conceivable cases; the user will at least need
the expertise to identify potential problems.
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Figure 4: A sample from a joint probability distribution (bivariate normal). The ellipse
shows a joint confidence interval based on a normal approximation of the sample (here: 3
times the s.d.). The marginal density functions are shown on the axes. This graph is taken
from Wikipedia: https://commons.wikimedia.org/wiki/File:Multivariate_normal_

sample.svg.
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2 The statistical details

The frequentist view that we focus on revolves around the likelihood function and Wilk’s
theorem (as commonly applied in the likelihood-ratio test), and on constructing CIs by
profiling the likelihood. To start with, our general error model is the likelihood function.
The likelihood (L) of a set of model parameters (θ), given a data set (Y ), is the probability
(P ) to obtain the data set if that parameter set would have been the correct one (and the
model is true). In math (the vertical lines should be read as ‘given’):

L(θ|Y ) = P (Y |θ) (2)

In the frequentist perspective, the data follow a probability distribution; each time we
perform the same experiment, the outcome is slightly different, and we assume that this
is caused by random variation. The parameters do not follow a probability distribution:
they are fixed but unknown. Optimisation of the likelihood function can be written as:

L(θ̂|Y ) = max
θ
L(θ|Y ) (3)

θ̂ = arg max
θ
L(θ|Y ) (4)

Where θ̂ is the parameter set that yields the highest value of the likelihood function (the
best-fit parameter set).

2.1 A simple example with one parameter

To illustrate the likelihood function and its use with an example, let’s toss a coin a number
of times and count the number of ‘heads’ (that we will call a success). Suppose we find 20
successes out of 50 trials. What is the probability to find this particular outcome Y = 20?
That depends on the probability p of ‘heads’ that we don’t know (or at least, that we don’t
want to make assumptions about). Calculating the probability of the outcome is simple in
this case, as we can use the binomial distribution:

P (Y = 20|p) =

(
50

20

)
p20(1− p)50−20 (5)

This probability is the likelihood L(p|Y = 20) that we are looking for; the likelihood is
a function of the parameter p. We can easily calculate this likelihood for large range of
values of the parameter p and look for the highest likelihood (Fig. 5). That value of the
parameter then gets a hat as in p̂. Not surprisingly, p̂ = 0.4 in this case. This is the
parameter value that leads to the highest probability of finding this particular outcome
Y = 20.

Next, we can calculate the CI of this parameter, given the data set. To this end, we
can invoke a likelihood-ratio test. This is a general test to compare the fit of two nested
models (i.e., models that only differ by fixing one or more parameters compared to the
‘full’ model) on the same data set, by taking the ratio of their likelihood values. How can
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Figure 5: The likelihood function for the probability of the coin when observing 20 times
heads in 50 throws.

we use this test to create a CI on the model parameter p? We can define the CI of p as
the entire set of values for p that would not be rejected in a likelihood-ratio test. The
two models that we compare are the ‘full’ model (with p as free parameter) to a ‘reduced’
model (where p is fixed). We can thus calculate the likelihood for a large number of values
of p and compare it to the highest-possible likelihood (as generated by the best fitting
parameter value p̂ = 0.4)

The ratio of two likelihoods (and thus the difference in two log-likelihoods) from nested
models can be tested for significance; whether the fits of the models are different enough
to yield a low probability of this difference happening purely by chance. To do this, we can
use an ‘asymptotic property’ of the likelihood ratio, which means that it becomes a better
approximation of reality, the larger the number of observations. Asymptotically, two times
the difference in log-likelihood ` will follow a χ2-distribution with as degrees of freedom
(df) the number of free parameters in which the two models differ (in our case df = 1).1

Using the natural logarithm of the likelihood (` = lnL):

2 (`(θ|Y )− `(θ1|Y )) ∼ χ2
df,1−α (6)

We compare the full parameter set θ, and a reduced parameter set θ1 (which in our simple
example will be an empty set). When two times the difference between the two likelihoods
exceeds the critical value of the χ2-distribution, the zero hypothesis (‘the fits are equally
good’) is rejected. Even though we are far away from an infinite number of observations
with our data sets, the χ2-distribution is a useful approximation for small data sets (see
[16]). Note that the quantity `(θ|Y )−`(θ1|Y ) is referred to here as the minus-log-likelihood
ratio, MLLR (the log-ratio of two likelihoods is the difference in log-likelihoods).

Using Eq. 5 and 6, we can easily calculate the log-likelihood ratio for a range of values
of p (Fig. 6). From this plot (or in this case even by direct calculation), we can find the
values of p for which two times the likelihood ratio yields exactly the χ2-criterion. There
will be two of these values: the likelihood will get lower (and the ratio, as expressed in

1This is known as Wilks’ theorem: https://en.wikipedia.org/wiki/Wilks%27_theorem.
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Eq. 6, higher) on either side of p̂. Will there be more than two of these crossings? Not in
this case, but that is certainly possible in more complex models. The CI now consists of
the set of all parameter values p for which the log-ratio is below the critical value, i.e., the
parameter values between the two points where the log-ratio crosses the critical value.
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Figure 6: Plotting two times the log-likelihood ratio versus the probability of heads p. For
the best-fitting parameter value, the ratio is one, and the log-ratio thus zero. Where the
log-ratio exceeds the critical value of the χ2-distribution, the values of p are rejected. The
parameter set below the criterion is the CI (0.27-0.54, which includes the possibility that
the coin is fair).

2.2 Extending to two parameters

How does this work out for a two-parameter model like the TK model we started out with?
Firstly, the likelihood function will be a different one: rather than using the binomial
distribution, we will likely invoke a normal distribution for the residuals (the difference
between model and observation). Secondly, it is somewhat more complicated to construct
CIs on the model parameters. For one free model parameter, we could simply calculate
the log-likelihood ratio for a range of values of the model parameters (Fig. 6). With two
parameters, we can can use a range for parameter 1, but what to do with parameter 2?
The solution is to always use the best-fitting value for parameter 2, given the fixed value
for parameter 1. In other words: we run through the range of parameter 1, and at each
point for parameter 1, fit parameter 2 while keeping parameter 1 fixed. In mathematical
terms, we can divide the total parameter vector θ into one or more parameters that we are
interested in (θ1), and ‘nuisance parameters’ that we are not (θ2). The profile likelihood (`p)
of a reduced parameter set (θ1) is obtained by maximising over the nuisance parameters:

`p(θ1) = max
θ2

`(θ|Y ) (7)

We can plot the result as in Figure 6, and call this the profile likelihood of parameter 1.
The curve is now the best value of the likelihood-ratio, given that we fix parameter 1 to
the value on the x-axis. Each point on the line thus constitutes a likelihood-ratio test,
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comparing the fit of the complete model (with two free parameters) to a reduced, nested,
model (the model with parameter 1 fixed to the value on the x-axis). The difference in free
parameters between both models is one, so for the critical value of the χ2-distribution, we
again need to use df = 1. After doing this for parameter 1, we can repeat the same process
for parameter 2; profiling is done for each parameter separately to construct their CIs.

How does this profiling relate to our 2-D parameter-space plot of Figure 3? In Figure
3, we plotted ‘lines of equal SSQ’. Now we moved to the likelihood as our goodness-of-fit
measure, so we can plot lines of equal likelihood, or equal likelihood-ratio (relative to the
best value), instead. Figure 7 shows equal-likelihood-ratio ellipses plotted at the likelihood
ratio corresponding to critical value of the χ2-distribution with df = 1 and df = 2.

Figure 7: Lines of ‘equal likelihood-ratio’ plotted around the best-fit parameter combi-
nation (yellow point). The outer ellipse is the critical value of the χ2-distribution with
df = 2, the inner ellipse for df = 1. The edges of the inner ellipse indicate the CIs for the
parameters.

Inside the inner ellipse at df = 1 are all the parameter sets that belong to the single-
parameter CIs for parameter ku and ke: if we fix one of the parameters to a value outside
of its CI, we will always reject the fit in a likelihood-ratio test at df = 1, no matter what
the value of the other parameter. The outer ellipse at df = 2 is the joint CI for the two
model parameters. If we fix two parameters to any point in this ellipse, we won’t reject
the fit. This ellipse is wider as we fix two parameters, rather than one, and we therefore
need to accept a worse fit. The joint interval is not particularly useful, in my opinion, so
we’ll focus on the inner rim.

It is good to realise that Figure 7 is a 2-D representation of a 3-D landscape. By
plotting lines of equal height, the plot is easier to interpret than the full 3-D version. The
profile likelihoods are also 2-D versions of this 3-D landscape, but projected in a different
manner: here we can see the height of the landscape (the likelihood ratio) but only one of
the model’s parameters. This is illustrated in Figure 8. All points in the ellipse for df = 1
(marked green) are somewhere in the green parts of the profile likelihoods. The profile
likelihood itself (the curve) marks the best likelihood value (lowest likelihood ratio) to be
found for each parameter value on the x-axis. It is expressed relative to the best value,
which is plotted as zero; the quantity on the y-axis is two times the minus log-likelihood
ratio (MLLR) as defined in Eq. 6. Apart from the parameter sets on the profile curve,
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there also exist sets with worse values of the MLLR (where the other parameter is not at
its optimal value), and they are somewhere above the profile curve. This is different from
the one-parameter case in Figure 6: when there is only one model parameter, all likelihood
ratios must lie on the curve (which therefore is a degenerative case).

Figure 8: Relation between the parameter-space plot (center panel) and the profile like-
lihoods (top and right panel). All three panels are projections of a 3-D landscape in two
dimensions. The y-axis of the profiles is two times the minus log-likelihood ratio (MLLR),
which can be compared to a critical value of the χ2-distribution (Eq. 6). The green area
contains the same parameter sets in all panels.

2.3 Profile likelihood for model predictions

In the previous section, we saw how profiling of the likelihood function was useful to
construct CIs on model parameters. However, we also would like to have CIs on model
predictions: model outputs for situations where we have no observations (or where we
have observations, but did not use them to calibrate the model). For example, we could
calibrate our TK model to an experiment at constant exposure, and use the calibrated
model to predict the internal concentration over time in a scenario with time-varying
exposure. Obviously, the uncertainty in the calibrated model parameters will affect the
certainty of our model predictions. How can we ‘propagate’ the errors from the calibration
to the model predictions?

The answer is, again, profiling of the likelihood function. However, instead of fixing a
model parameter to a range of values, we now fix a model prediction to a range of values.
For example, with our calibrated TK model, we can predict the internal concentration
at t = 10 days under a certain time-varying exposure scenario. The predicted internal
concentration is on the x-axis of the profile plot (Fig. 9). We fix the prediction, and
fit all model parameters again (to the calibration data set at constant exposure). This
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requires constrained optimisation: fitting the model parameters under the constraint that
a model prediction following from these parameters must have a certain value. This single
constraint means that the we again have to use the critical value from the χ2-distribution
with df = 1.

Figure 9: Profile likelihood for a model prediction. All model parameters are fitted on the
calibration data set, under the constraint that the prediction must have the value at the
x-axis. The y-axis of the profile is two times the minus log-likelihood ratio (MLLR), which
can be compared to a critical value of the χ2-distribution (Eq. 6).

In mathematical terms, we have to consider the prediction profile likelihood. Since we
are interested in the model prediction (Z), the entire parameter set θ is the nuisance and
needs to be profiled out. What we then obtain is (shorthand notation):

`p(Z) = max
θ|f(θ)=Z

`(θ|Y ) (8)

We thus find the parameter set θ to maximise the likelihood (as in Eq. 4) with a constraint:
some function of the model parameters f(θ) should have the prediction Z as its output.

2.4 Practical issues and the sampling approach

In the previous sections, I outlined a framework for model optimisation and construction
of CIs on model parameters and model predictions. All that is needed is an appropriate
likelihood function and optimisation routines. We need optimisation to find the best-fitting
parameter set, and after that, to construct CIs (profiling is basically repeatedly running an
optimisation routine with one parameter fixed or with a single constraint). However, we
generally need to do a lot of optimisations. If we want to make a profile with 50 points on
the x-axis, we need to do 50 optimisations, for each model parameter and for each model
prediction. Each optimisation requires starting values and runs the risk of ending up in a
local minimum if the starting values are not well chosen. This risk can be reduced by using
more-robust global methods, but the demands on calculation time will rapidly become
prohibitive. Furthermore, it is inefficient to run so many optimisations independently:
evaluating the likelihood at so many points in parameter space, and throwing the result
away before moving to a next optimisation.

We could, in principle, simply evaluate the likelihood function at a lot of points in
parameter space, e.g., a regularly-spaced grid. In a 2-D parameter space, and when we
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can limit the parameter ranges to search, this would be feasible. When we have enough
points, we can get a good approximation of the green area in Figure 8: the set of all
parameter combinations that are not rejected in a likelihood-ratio test with one degree of
freedom. The green area in the parameter-space plot is the same parameter set as the
green section plotted in the likelihood profiles for the single parameters. Thus, from a
good approximation of the green area of parameter space, we automatically get a good
approximation of the CIs on the model parameters.

The profile likelihoods in Figure 8 are in fact the lower edge of a 3-D parameter land-
scape, viewed from one side (a 2-D projection). Can we also interpret the prediction profile
of Figure 9 as a projection from this landscape? We would need to extend the landscape
with a fourth dimension: each parameter combination has an associated likelihood, but
also an associated model prediction. This is thus a 4-D landscape; impossible to plot in a
simple way, but the principles remain the same. We can project this landscape onto a 2-D
plot, with the prediction on the x-axis and the MLLR on the y-axis. The prediction profile
of Figure 9 was built from (constrained) optimisation, but in fact it is the lower edge of
this 2-D projection. The green area in Figure 8 thus also corresponds to the green area in
the prediction plot of Figure 10.

Figure 10: Profile likelihood for a model prediction. The parameter sets in the green area
in Figure 8 also appear in the green area here. The y-axis of the profile is two times
the minus log-likelihood ratio (MLLR), which can be compared to a critical value of the
χ2-distribution (Eq. 6).

This gives us an efficient strategy for model optimisation and construction of CIs on
parameters and model predictions. If we have a sufficiently detailed sample from the ‘rele-
vant part’ of parameter space, we can calculate a likelihood at each point, and predictions
at each point, and make projections to approximate the profiles that we are interested in.
For the predictions, we will not generally be interested in the entire prediction profile; we
just need CIs. Therefore, we can take a short-cut. The CI on the model prediction is
given by the points at which the prediction profile crosses the χ2-criterion. Therefore, the
only relevant part of parameter space is the set of parameter combinations that sit at the
χ2-criterion. Since we will have a discrete sample of finite size, we will need to consider the
parameter sets close to this criterion (no set will be exactly on it). So, instead of calculating
the model prediction for each possible parameter set, we can focus on the parameter sets
that yield a likelihood ratio close to the χ2-criterion, make predictions from them, and take
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the minimum and maximum of these predictions as the CI. This is illustrated in Figure
11: we only need to make predictions for the parameter sets in the grey band around the
χ2-criterion to create CIs on the model prediction.

Figure 11: Parameter space, with the profile likelihoods for the parameters and a model
prediction. The green area contains the same parameter sets in all panels, and the same
holds for the grey band.

The tricky part is to get a good sample from parameter space, with the best-fitting
parameter set and sufficient detail in the surroundings of this point. This task becomes
rapidly more complex with an increase in number of free parameters (which implies more
dimensions of parameter space). If we can decrease the range of each parameter, this task
becomes more manageable. For example, the elimination rate in the TK model (ke) will
always be between zero and infinity, which is an impossible space to sample. However,
very high values are not so interesting: they imply immediate steady state. The difference
in model behaviour between a high value of ke and 10 times that value will be irrelevant.
Similarly, very low values are not so interesting: they imply that there is no steady state
on a relevant time scale (the internal concentration just increases linearly over time).
Therefore, based on our time scale of interest, we should be able to set a range of 3-4
orders of magnitude for where the interesting values lie. Such a range can be efficiently
sampled (on log-scale).

With some careful reasoning, we can set such ranges for each model parameter and
thereby limit the parameter space to search. However, for models with more than two
parameters we enter the ‘curse of dimensionality’, as parameter space becomes a horribly
large (hyper-)volume. Therefore, we need to come up with a more efficient approach than
simply taking random points or a regular grid across parameter space.
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2.5 Additional considerations and further reading

If we have an infinitely large data set (‘asymptotically’), our iso-likelihood lines will be
perfectly elliptical, and our profiles all perfect parabolas. However, in practical cases, we
will often encounter more strangely shaped parameter landscapes. There may even be
disconnected ‘islands of good fit’. This is one of the reasons why it is a good idea to
map this landscape, and to base CIs on the shape of the landscape, rather than assuming
that is perfectly asymptotic (which is often done in statistics). However, the use of the
χ2-distribution for assessing the likelihood ratio (Eq. 6) also rest on asymptotic theory.
Fortunately, this call on asymptotic theory is not as demanding as the previous one. So,
constructing profile likelihoods and evaluating them against a χ2-criterion is generally a
good idea [16]. However, for small data sets, the coverage of the CI may be somewhat
more or less than 95%.

Application of likelihood-based inference methods obviously requires an appropriate
likelihood function. For GUTS [9], the likelihood function can be derived from the multi-
nomial distribution (or the equivalent conditional binomial), which is a good match to the
problem. However, for DEBtox [11, 8], we are usually in a situation that growth and/or
reproduction is followed on the same group of animals over time. In that case, we have
dependent observations. Note that, in GUTS, we also follow a group of animals over time,
but for each animal there is only one fundamental observation: the interval in which it dies.
This observation can be assumed to be independent (the death of one individual should
not affect the death probability of another). An appropriate approach for dependent ob-
servations is not so straightforward, especially because the ‘errors’ that we observe are not
caused by random measurement errors but largely by inter-individual variation (see also
[6]). For DEBtox, I am not aware of suitable likelihood functions for dependent obser-
vations; in practice, everybody assumes independent distributions for the errors (usually
normal, in some cases after transformation). In my opinion, it is still a good idea to use
this likelihood function, and to make CIs, although the interpretation needs to be more
qualitative.

More technical information about calculation of the likelihood and construction of con-
fidence intervals can be found in textbooks [16] or the open literature. I especially rec-
ommend the following papers for more background on likelihood profiling: [14, 12, 17].
Regarding the ‘prediction profile likelihood’, see [13, 12] (these papers have helped me
tremendously to make the link between parameter landscapes and CIs on model predic-
tions).
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3 Short description of the reduced GUTS models

The statistical framework (Section 2) and the specific algorithm (Section 4) were designed
in a project developing a support tool for reduced GUTS models (see http://openguts.

info/about.html). GUTS stands for the General Unified Threshold model for Survival,
first published in 2011 [9], and described in detail in a freely-downloadable e-book [10].
However, it is good to stress that the statistical framework can, in principle, be used with
any model (as long as a likelihood function is provided). The algorithm contains very
few GUTS-specific elements, only the choices the search ranges of each parameter and the
check on ‘slow kinetics’.

To make this paper (and especially the case study) readable for those without knowledge
of GUTS, a short model description is provided here. GUTS is a simple TKTD framework
for effects on the endpoint survival (and other all-or-nothing events that can be treated
as irreversible chance events). The openGUTS software tool implements the two simplest
models from this framework (reduced pure SD and reduced pure IT), so this description
will be limited to these models (see Fig. 12). The assumptions underlying these models
are:

1. A chemical first needs to be taken up into the body (toxicokinetics), and then causes
damage that can be repaired (damage dynamics). In the reduced GUTS models, these
two processes are lumped: damage is directly linked to the external concentration
and follows one-compartment dynamics with first-order kinetics. Damage accrual is
proportional to the external concentration, and damage repair is proportional to the
level of damage. Damage is kept abstract, and we follow the scaled damage. This
implies that damage dynamics is specified by only a single parameter: the dominant
rate constant kd. The damage level is driving the toxic effect.

2. Death is a chance process. For the stochastic death (SD) model, all individuals are
identical, and the instantaneous probability to die (the hazard rate) is proportional
to the damage level above a threshold value mw (the proportionality is the killing
rate bw). For the individual tolerance (IT) model, death is immediate when damage
exceeds a threshold, but this threshold follows a log-logistic frequency distribution
in the population (with median mw and spread factor Fs).

3. Background mortality is independent of the mortality caused by the toxicant, and is
taken as a constant hazard rate.

4. The likelihood function follows from the assumption that death is a chance process
that occurs only once in the lifetime of an individual, and the chance to die is for
each individual independent.

Translated into model equations, damage dynamics is given by the following differential
equation:

dDw

dt
= kd(Cw −Dw) with Dw(0) = 0 (9)
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Figure 12: Schematic representation of the reduced GUTS models for pure SD and pure
IT, including the parameter symbols.

This equation is used for the SD model as well as the IT model. Here, Dw is the scaled
damage (a state variable), Cw is the external concentration (as function of time; a forcing),
and kd is the dominant rate constant (a model parameter). Note that damage has the
dimensions of an external concentration, hence the designation scaled damage and the
subscript w (it is referenced to the external concentration, here taken to be in water). The
openGUTS software tool applies analytical solutions for this equation, which is feasible as
the exposure profile must be entered as a series of linear (or instant) changes over time. The
analytical solution for a linear change in forcing is applied sequentially over the exposure
profile.

For SD, the hazard rate due to chemical stress (hc) is calculated from damage Dw

following a linear-with-threshold relationship:

hc = bw max(0, Dw −mw) (10)

Where mw is the threshold for effects (a model parameter), and bw the proportionality
constant or killing rate. Note the subscript w as these parameters are also referenced to
a water phase. The hazard rate is translated into a survival probability Sc by integration
over time:
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Sc = exp

(
−
∫ t

0

hc(τ)dτ

)
(11)

Working with hazard rates in this fashion is a standard statistical approach to deal with
chance events over time. The openGUTS tool applies an analytical solution for this integra-
tion when the exposure concentration is constant over time, but trapezium-rule integration
otherwise.

For the IT model, we first need to establish the maximum value of the scaled damage
(Dwm) that has occurred over time. This is needed because dead animals will remain dead,
even when damage decreases again later in time. No integration is needed for this model,
as death is immediate when damage exceeds a threshold. The threshold is assumed to
follow a log-logistic distribution in the population:

Sc =
1

1 + (Dwm/mw)β
with β =

ln 39

lnFs
(12)

The threshold distribution is specified by a median mw (model parameter) and a factor of
spread Fs (model parameter). The spread factor is a practical measure for log-symmetrical
distributions: 95% of the threshold values are within a factor of Fs from the median. This
parameter has a simple link to the more familiar β of the log-logistic distribution.

For both model cases, when Sc is established, it needs to be multiplied with the back-
ground survival probability. As we are usually dealing with short-term experimental data,
background mortality is not due to ageing, and can usually be well represented by a con-
stant hazard rate (representing handling effects and other random causes of death):

S = Sc × exp(−hbt) (13)

Where hb is the background hazard rate (model parameter), and S is the total survival
probability (model output).

The likelihood function is based on the multinomial distribution. This is the appropriate
distribution for the data, as the data are for a single discrete (irreversible) event in the
individual’s life. The log-likelihood function for a parameter set θ and a data set X is (first
considering a single treatment Cw):

`(θ|X) =
∑
i

xi ln pi(Cw, θ) (14)

The individual observations for each time interval between observations i are denoted as
xi (the numbers of deaths in interval i). The (unconditional) death probability for each
interval is pi. The unconditional death probabilities can be easily calculated from the
GUTS predictions on survival probability at the start of each interval Si, and the observed
deaths follow from the observed number of survivors at the start of each interval yi:

pi = Si(Cw, θ)− Si+1(Cw, θ) (15)

xi = yi − yi+1 (16)
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Note that the last interval to consider is from the end of the experimental test to infinity, as
the probabilities pi over time need to sum to one (to satisfy the conditions for a multinomial
distribution). For the last interval Si+1 = 0 and yi+1 = 0. Since we will usually have
multiple treatments in a data set, the log-likelihood `(θ|X) needs to be summed over all
treatments (the treatments are taken to be independent).
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4 The parameter-space explorer algorithm

4.1 Introduction

The parameter-space explorer algorithm was developed by DEBtox Research as part of
the openGUTS project to find and map the relevant part of parameter space for reduced
GUTS models, given a specific data set. The relevant part of parameter space is the (hyper-
)volume that contains the best-fit parameter set and all sets that are within the cut-off
criterion based on the critical value of the χ2-distribution with one degree of freedom.
To add some robustness, and to provide more insight into the shape of the parameter
landscape, a larger volume will be mapped: by default all sets within the χ2-criterion with
as degrees of freedom the total number of fitted parameters (this is the joint confidence
region for all free parameters). The sample from parameter space is used to construct the
CIs on model parameters and model predictions.

An important constraint in the openGUTS project was that the algorithm should op-
erate fully automatic, without user interaction. This is only efficient when the volume of
parameter space can be limited as much as possible. To this end, a series of heuristics
was developed for the GUTS model, deriving ranges based on the data set, the foreseen
extrapolations, and some general considerations (see the openGUTS design document on
https://openguts.info/download.html). Another important requirement was robust-
ness, as the openGUTS software is intended for use in a regulatory context. Since the
algorithm covers a large part of parameter space, it is much more effective in locating the
global optimum than local methods such as the Nelder-Mead simplex. However, to increase
robustness, and to ensure proper sample coverage of parameter space, sampling is amended
with optimisation and explicit likelihood profiling (sequential optimisation). It turns out
that parameter space for GUTS problems can be very strangely shaped, which makes map-
ping difficult in such cases (see typical examples in the interpretation background document
from http://openguts.info/download.html).

4.2 The algorithm

The framework to tackle the requirements listed above is based on sampling from param-
eter space. The algorithm in openGUTS combines grid search, a genetic algorithm, and
likelihood profiling, to provide extreme robustness. The outline of the entire algorithm is
shown in Figure 13. The general idea is to try a large population of candidate parameter
sets, and select the most promising sets for a next round, where each set will be propagated
with random mutations to a new set of candidates. The evaluated sets from the previous
rounds do not need to be discarded: the only thing that counts is whether their likelihood
is within a certain distance from the best-fitting set. However, as the best-fitting set is
also subject to change with consecutive rounds, the confidence region (CR) will change as
well (and a set that was acceptable in round i may not be anymore in round i+ 1).

In principle, we can keep all of the sets that are evaluated: their likelihood value does
not change as the optimisation progresses. However, in view of memory use, the set is
pruned every round: sets are removed that are too far outside of the 95% joint CR as
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Figure 13: General flowchart for how the optimisaton algorithm operates. Well-behaved
data sets will only require basic optimisation (left part of the scheme); the extra optimisa-
tion (right part of the scheme) is a fail-safe to take care of more problematic data sets. The
genetic-algorithm step will be repeated several times until its ‘targets’ are met (minimum
number of sets in inner and outer rim, and for the extra rounds also a check against the
profile likelihood). At several points in the process, there is a check against a maximum
number of iterations to avoid getting stuck.

established in that round. For propagating the uncertainty due to model predictions, we
only need the sets within a smaller joint CR (based on χ2

df=1,α=0.05). Nevertheless, for
robustness (to make sure that local minima are not missed, and to still have a sample
when the best fit improves) it is essential to let the algorithm generate a sample of the
95% joint CR, from which we can take a sub-set with smaller coverage later on.

The random mutation of parameter sets continues for several rounds until the targets are
met (sufficient points in the sample, or maximum number of rounds reached). In principle,
the sample can be used directly to approximate the CIs on the model parameters (as
explained in the Section 2). However, to increase robustness, the algorithm uses explicit
profiling to refine the edge of the sample. This implies repeated optimisations, using the
sample to provide the starting values (which is robust and efficient). In most cases, this
will only marginally improve the CIs on the model parameters. However, in cases where
the parameter landscape is strangely shaped, sampling may not be efficient, and profiling
will help reveal that.

These steps are the core of the algorithm, and are on the left side of Figure 13. However,
after these steps, it is possible that some problems have been identified. For example, the
profiling step may have located a better optimum, or there are gaps between the profile
and the sample, or insufficient points in the sample. In those cases, additional rounds of
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mutation are performed, focussing on the problematic parts of parameter space. And, if
needed, a new round of profiling is initiated. These extra steps improve robustness, at the
cost of a substantial calculation time.

In more detail, the algorithm operates following these steps:

Module 1. Grid search

1. Create a regular grid in parameter space, covering the ranges of the (log-transformed)
parameter values. Ranges were established based on the time and concentration
vectors of the data set, the foreseen extrapolations, and a set of heuristics. The grid
thus has the same dimensions as the number of fitted parameters.

2. Evaluate all parameter sets from the grid: each parameter set now gets a minus-log-
likelihood (MLL). This is not an optimisation, only a single evaluation. All parameter
sets with their corresponding MLL are stored in the results matrix.

3. Find the best fit (lowest MLL) so far, and select the parameter sets whose MLLs are
within a certain distance from the best fit. If this results in less than a minimum
number of sets, use the minimum number of best ones instead. These parameter sets
are collected in a matrix of new candidate sets.

Module 2. Genetic algorithm In this module, the same series of steps is being re-
peated for a number of subsequent rounds.

1. For each parameter set in the candidate matrix, create a number of new parameter
sets using a random mutation of the parameter values. For each parameter, a random
number is added or subtracted between zero and a fraction of the initial parameter-
grid spacing. This fraction will decrease with each round, such that the sample can
contract.

2. The mutated parameter sets from the previous step are evaluated against the data
set (again, no optimisation), yielding a MLL, which is stored with the parameter set
in the results matrix.

3. Find the best fit (lowest MLL) so far, and perform a quick and dirty simplex optimi-
sation to improve upon the optimum achieved so far. Add this optimised parameter
set to the results matrix.

4. Check for signs of whether a restart of the algorithm is needed (when ‘slow kinetics’
is indicated, as explained in the case study in the main text and Section 7). This
check is only performed under certain conditions (when the threshold is fitted on
normal scale and the dominant rate constant on log-scale).

5. See how many parameter sets are within the joint CR (MLLR within a specific
criterion, depending on the number of free parameters) and the single-parameter
region (MLLR within the criterion using χ2

df=1,α=0.05). If it is enough, or when we
have reached a maximum number of rounds), jump to Module 3.
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6. Prepare for a new round. Based on the results so far, select an optimal set of
candidate parameters to continue with. In general, we will continue with promising
new sets generated in the last round only, to avoid resampling from the same points
over and over again. However, if the number of sets is too small, sets from all previous
rounds will be included as well. In special situations, a more specific candidate matrix
is defined. When we have sufficient points in the total cloud, but not enough in the
inner rim (the single-parameter region), only sets around the inner rim are taken.
Check how many new mutations will be tried in the next round, and if it is very
high, reduce it. If few good values are found, increase it. Return back to step 1 of
this module.

Module 3. Likelihood profiling

1. Run a regular simplex optimisation, starting from the best set established so far in
the results matrix, to make sure we are in the optimum.

2. Refine the edges of the cloud for a single-parameter with profiling (sequential op-
timisations along a parameter’s range), using the sample as basis. This yields a
very robust profile likelihood. If a better optimum is located, run a regular simplex
optimisation to improve it.

3. The profiling collects the points where the profile (the optimised log-likelihood) is
substantially better than the best sample point in that range of the parameter; this
indicates an area where sampling has been poor. Furthermore, it collects the points
where the profile extends beyond the range of sample points. If the profiling has
located a much better optimum, this shifts the sample, and there may not be enough
points in the inner rim anymore. If one of these situations happen, an additional
series of sampling rounds is initiated, using the collected points as candidate sets. If
no problems are identified, jump to Module 6.

Module 4. Extra rounds of sampling

1. Mutate candidate parameter sets randomly and calculate the associated MLL (again,
no optimisation). Test the new total sample in relation to the profile likelihood.
Collect points where the profile is much better than the sample, and flag when there
are sample points that are below the profile line. These are the candidates for further
sampling.

2. Decide whether to continue sampling. If there are insufficient sets in the inner rim,
go back to step 1 of this module. If the previous step finds points where the profile is
much better than the sample, use them in another round of sampling, also go back to
step 1. If no problems are flagged, or the maximum extra sampling/profiling rounds
has been reached, jump to Module 6.

25



Module 5. Extra round of profiling

1. When there are sample points that are (non-trivially) below the profile line, do an-
other profiling step. If a better optimum is located, run a regular simplex optimisation
to improve it. If this results in flagged points where the profile is much lower than
the sample, use these points as candidate sets in another sampling round, and go
back to Module 4.

Module 6. Finishing up and reporting

1. Calculate CIs from the profiles. Check whether any CIs are open on one side and
mark them. Check whether CIs run into bounds. Also check whether the CI is a
broken set. The sets from the profile are added to the total results matrix as well.
This helps in rather extreme cases where the mutation algorithm had difficulties to
sample in a relevant region of parameter space.

2. Display results on screen. Note that for broken CIs, only the outer edges are reported
in openGUTS: the min and max of all points where the likelihood-ratio crosses the
χ2-criterion.

3. Save the calibration results to file to use for all model predictions that require CIs
on model curves.

4.3 Some details of Module 2

In Module 2, the settings for the algorithm will change with each round of the analysis,
and will be modified based on how many good points are found. The cut-off criterion for
continuation of candidate sets will decrease with each round to end up at the final value
(based on the χ2-criterion, 95% confidence, with as df the number of free parameters).
The number of new tries per parameter set decreases as well: initially, we need many tries
to get a robust coverage of parameter space, but when we already have a large number
of sets within the joint CR, we can use less tries in subsequent rounds (otherwise, we end
up with much more values than needed). The maximum mutation jump distance will also
decrease with subsequent rounds, starting at 1 (so the maximum mutation is the same
as the grid spacing used). All these settings have been tuned to obtain a good balance
between robustness and speed of contraction of the sampling cloud for a wide range of
relevant example data sets (with robustness more important than speed).

Step 6 of Module 2 is the crucial one, and involves a number of criteria to select the
candidate parameter sets and settings for the next round. In principle, only the new values
tried in a round, that are within a certain criterion for this round, are propagated to the
next round, to avoid mutating the same sets of parameters over and over in consecutive
rounds. However, this set may be very large or very small, which requires some modifica-
tions of the set and/or of the number of new tries in the next round. The aim is to end
up with an accepted parameter sample that is not too much more than the minimum size
specified, and that provides good coverage of the relevant part of parameter space, for all
possible data sets.
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In Step 6 of Module 2, the algorithm will also check how many sets there are within
a narrower CR (based on χ2

df=1,α=0.05), the inner rim. The edges of this cloud mark the
single-parameter CIs. We need to have sufficient sets within this inner cloud, as it is used to
calculate the CIs on the single parameters, and because it is used to calculate intervals on
model predictions. If there are sufficient accepted sets in the joint region, but insufficient
sets in the inner region, the next round will continue with mutating candidate sets from
the inner region.

4.4 Some details of Module 3

In profiling, each fitted model parameter is treated separately. The sample is viewed from
the perspective of one parameter (θ1), plotted on the x-axis, with the MLLR on the y-axis
(so the best value is plotted at zero, and poorer fits at positive y-values). The parameter’s
relevant range (as found so far) is divided into 50 slices. We start with the left-most slice
(green). Parameter θ1 is fixed to the middle of the slice (F), and the other parameter are
fitted, using the best set from the sample in this slice (S) as starting values for the free
parameters (excluding θ1).

This yields an optimised point on the profile (O). Now we move to the next slice, and
repeat the procedure: fix θ1 to the middle of the slice (F), and select the best set from
the sample in this slice (S). However, now we perform two rough simplex optimisations in
each slice: one starting from the best-fitting set in this slice, and one starting from the
optimised set in the previous slice (O). The best of these two optimisations is subsequently
used in a regular simplex optimisation, yielding an optimised point for the new slice.
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This procedure continues until we have covered all slices of the parameter’s range, and we
can draw a profile curve.

In principle, this should have been sufficient to yield a robust likelihood curve. However, in
some very recalcitrant cases, profiling misses a branch in parameter space (it fails to spot
a better optimum over a ridge in the landscape). As an extra safety measure, we repeat
the procedure, going back from right to left, fixing θ1 to the value of an optimised point
(F) (which was also the middle of a slice), but optimising using the parameter values (for
the free parameters) from the previous point in the profile (O).

When the edges of the resulting profile are not well above the cut-off criterion (based on
χ2
df=1,α=0.05), that means that the sample did not capture the inner rim well enough. In

that case, the profiles are extended outwards until they are well above the criterion or until
they hit a boundary. If we find a better optimum, refine it with another optimisation.

In the profiling process, candidate parameter sets are collected for additional mutation.
These candidates are parameter sets in the sample where an optimised point (O) is much
better than the best element of the sample in that slice (S). Both points will be selected as
candidates for mutation. Additionally, optimised points will be collected where the profile
is extended beyond the sample (this mainly happens when parameters run away to an
upper or lower boundary of their range).

4.5 Some comments on Module 4/5

Module 4 and 5 are a safety measure. For friendly data sets, they will not generally be
triggered, and if they are, the refinement will not be substantial. However, there are data
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sets where the core sampling routine fails to sample a particular part of parameter space, or
even (in very extreme cases) misses the global optimum. Profiling will indicate these issues,
and the iterations between profiling and targeted mutation are effective to still obtain good
coverage of the sample. Downside is increased calculation time and often a much larger
sample in total. However, for application in risk assessment, robustness is more important
than speed.
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5 Demonstration for a simple case

This chapter runs through a well-behaved case to illustrate how the main part of the
algorithm operates in more than two dimensions. The plots are from the openGUTS Matlab
version (http://openguts.info/download.html), using the case study for Gammarus
pulex exposed to propiconazole (constant exposure) [15]. The GUTS model is fitted with
three free parameters; background hazard is fixed to the control mortality. However, fitting
the background hazard together with the other parameters is also possible. Parameter
space is thus 3-D, and with the associated likelihood based on the data set, we get a 4-D
landscape. The 3-D parameter space is plotted as three 2-D projections (as in Fig. 7),
and the likelihood dimension is shown as different colours of the points (rather than the
ellipses for the asymptotic case).

Round 1, Module 1. Grid search The algorithm starts from a regular grid, defined
by the search ranges. Note that there are five parameters in the reduced GUTS models,
but only three are fitted.

Settings for parameter search ranges:

=====================================================================

kd bounds: 0.001641 - 143.8 1/d fit: 1 (log)

mw bounds: 0.002202 - 35.56 uM fit: 1 (norm)

hb bounds: 0.01307 - 0.01307 1/d fit: 0 (norm)

bw bounds: 0.0007332 - 9310 1/(uM d) fit: 1 (log)

Fs bounds: 1 - 1 [-] fit: 0 (norm)

=====================================================================

Starting round 1 with initial grid of 2016 parameter sets

The algorithm calculates the likelihood at each point of a regular grid. The plot shows the
best value so far (yellow), the points within the inner rim (based on χ2

df=1,α=0.05, green), and
the points that are ‘good enough’ to act as candidates for the next round (blue, unfilled).
Note that the plot axes are scaled to focus on the relevant area of parameter space (covering
the yellow point, and the green and blue points).
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After this round, the algorithm gives the current status on screen, and reports what it
will do in the next round:

Status: best fit so far is (minloglik) 131.8625

Starting round 2, refining a selection of 200 parameter sets, with 60 tries each
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Round 2, Module 2. Genetic algorithm In the next round, the algorithm moves
to Module 2, and starts to mutate the candidate parameter sets identified in the previous
round. Afterwards, it plots a new picture of parameter space. After one round of mutations,
parameter space is already starting to take shape.
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A status update is printed on-screen. This shows that we only have very few points that
are within the joint CI (based on χ2

df=3,α=0.05) and even less within the inner rim used to
construct CIs on model parameters and predictions (based on χ2

df=1,α=0.05, green points).
The unfilled blue points in the graph are the ones that fulfill a likelihood-ratio criterion
that makes them eligible candidates for the next round. This criterion decreases with every
round of the algorithm, but is still rather high in this round. The figure therefore contains
more points than the points in the joint CR that are counted in the status display on
screen.

Status: 14 sets within total CI and 6 within inner. Best fit: 125.8166

Starting round 3, refining a selection of 200 parameter sets, with 40 tries each
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Round 3, Module 2. Genetic algorithm The algorithm now stays in Module 2
until its targets are met (sufficient points in the joint CI and in the inner rim, unless the
maximum number of rounds is reached). The shape of parameter space becomes clearer,
and there are more green points.
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A status update is printed on-screen.

Status: 245 sets within total CI and 86 within inner. Best fit: 125.8154

Starting round 4, refining a selection of 753 parameter sets, with 60 tries each
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Round 4, Module 2. Genetic algorithm The algorithm now stays in Module 2 until
its targets are met. The final shape of parameter space has emerged, and we can now
clearly visualise continuous lines of equal likelihood ratio as the outer edges of the blue
and green points. These are not the perfect ellipses of Figure 7, which shows that we are
not in the ‘asymptotic’ situation (see Section 2.5). However, in this case, the shapes are not
too different from ellipses, which is why this case study can be designated as ‘well-behaved’.

Note that the blue points indicate a volume of space that is still somewhat larger than
the joint CI of the model parameters.
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A status update is printed on-screen. At this point, the targets are met: there are sufficient
points in the joint CI as well as in the inner rim. A simplex optimisation is ran on the best
set so far, which only marginally improves the fit.

Status: 7250 sets within total CI and 2407 within inner. Best fit: 125.8154

Finished sampling, running a simplex optimisation ...

Status: 7251 sets within total CI and 2408 within inner. Best fit: 125.8153
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Round 5, Module 3. Likelihood profiling The algorithm now moves to Module 3.
It now also plots the ‘side view’ of the parameter landscape on the diagonal of the plot.
This way, we can see the height of the points (the minus log-likelihood-ratio or MLLR),
projected in one of the dimensions of parameter space (such that only one parameter is
shown on the x-axis). The green points in the parameter-space plots correspond to the
green points in the ‘side view’ plots on the diagonal. The profile likelihood is the lower edge
of the cloud in this ‘side view’ projection. The algorithm refines this edge by sequential
optimisations (red line), which, in this example, is not leading to any surprises.

This plot is equivalent to the schematic plot in Figure 8. However, the profile plots
on the diagonal are all ‘right side up’, as the plot format of Figure 8 does not work so
well anymore with more than two parameters. Note the horizontal dotted lines around the
critical value of the χ2-criterion (plotted at 0.5×χ2

df=1,α=0.05 as the MLLR is plotted on the
y-axis). The points within this band will be used for error propagation. This is equivalent
to the grey bands in Figure 11.
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A status update is printed on-screen. Another simplex optimisation is ran on the best set
so far, which only marginally improves the fit (beyond the fourth decimal).

Starting round 5, creating the profile likelihoods for each parameter
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Finished profiling, running a simplex optimisation on the best fit set found ...

Status: 7252 sets within total CI and 2409 within inner. Best fit: 125.8153
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Finishing up. Reporting The algorithm has finished, and no problems were flagged.
Therefore, CIs on the model parameters can be calculated (interpolated from the profile
likelihood) and printed on screen.

==========================================================================

Results of the parameter estimation

==========================================================================

openGUTS Matlab: v1.0 (10 December 2019)

Base name : propiconazole

Analysis date : 18-Feb-2020 (09:41)

Following data sets are loaded for calibration:

set: 1, file: propiconazole_constant.txt

Sample: 7252 sets in joint CI and 2409 in inner CI.

Propagation set: 1114 sets will be used for error propagation.

Minus log-likelihood has reached 125.82 (AIC=257.63).

Best estimates and 95% CIs on single parameters

==========================================================================

kd best: 2.191 ( 1.630 - 3.353 ) 1/d fit: 1 (log)

mw best: 16.93 ( 15.74 - 17.57 ) uM fit: 1 (norm)

hb best: 0.01307 ( NaN - NaN ) 1/d fit: 0 (norm)

bw best: 0.1306 ( 0.08626 - 0.1912 ) 1/(uM d) fit: 1 (log)

Fs best: 1 ( NaN - NaN ) [-] fit: 0 (norm)

==========================================================================

Note: the size of the sample has only increased 1 set from the previous round (this is
because the result from the simplex optimisation was added to the sample.). However, also
the optimised profile points were added to the sample before saving. This is not included
in the counters used for reporting on screen, which was an oversight in the openGUTS
software v1.0.

The same data set was also used in the GUTS ring test (Appendix A in [10]). The
openGUTS test result background document (http://openguts.info/download.html)
shows more detailed comparisons between openGUTS and the Bayesian platform MO-
SAIC/MORSE. The results are very similar, which is to be expected when the inference is
dominated by the information in the data set (rather than by the priors).
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6 Implementation in BYOM

The parameter-space explorer algorithm was specifically developed for the openGUTS soft-
ware (see http://www.openguts.info). However, an automated, robust and user-friendly
algorithm would also be helpful in other cases, for example also for DEBtox applications.
To this end, the openGUTS algorithm was implemented into the general modelling plat-
form BYOM under Matlab (see http://www.debtox.info/byom.html). In principle, the
parameter-space explorer can now be used for any model analysis, but a few things need
to be kept in mind:

1. The algorithm works well for 1-4 free model parameters (though for 1 free parameter,
there is little need for it), and will also generally work (though rather slowly) for 5
free parameters. However, for more parameters, it is quite possible that the algorithm
will not provide good coverage of parameter space (and in any case will be extremely
slow). One can always restart the algorithm with reduced search ranges, learning from
the initial run. Fitting more than 4 parameters is therefore best done by experts until
more testing has been performed.

2. The algorithm needs min-max search ranges for each free model parameter. Tighter
search ranges will lead to more robust and rapid analyses, but run the risk of miss-
ing potentially important parts of parameter space. Selection of search ranges thus
requires proper attention. For openGUTS, search ranges are calculated automati-
cally, based on the data set and the foreseen extrapolations (see design document at
https://openguts.info/download.html). For DEBtox analyses, a similar set of
rules can be used, but this is more complex and needs to be further tested.

3. Linked to the previous point: for each parameter, it needs to be decided whether
the parameter is fitted on log-scale or on normal scale. For openGUTS this deci-
sion is performed automatically (see design document at https://openguts.info/

download.html).

4. The sample from parameter space is saved in a mat file. The name is based on the
name of the script file from which it is run. The sample can be used to calculate
CIs, just like the other methods that are implemented in BYOM (Bayesian and the
likelihood-region shooting method).

5. In the openGUTS setting, the algorithm has been optimised (e.g., in terms of min-
max bounds) and tested to make sure it can perform robustly without user interfer-
ence. In other settings, more user expertise is needed.

6.1 Technical notes

Further notes on the implementation in BYOM:

1. The functions needed for the parameter-space explorer are kept in a separate folder
parspace, as sub-folder of the engine. This is helpful to organise the functions

38

http://www.openguts.info
http://www.debtox.info/byom.html
https://openguts.info/download.html
https://openguts.info/download.html
https://openguts.info/download.html


a bit, and also while these functions are distributed under a different license than
the rest of BYOM. This separate folder in the engine also required modifications
to pathdefine (which is in every BYOM folder in which scripts are run). The file
pathdefine needed for the parameter-space explorer is thus not the same as the
standard BYOM version.

2. In general, when working with BYOM, one would fit a data set first, and calculate
CIs on the parameter estimates next. The optimisation routine thus prints the best
estimates only. Since the parameter-space explorer does the optimisation and pa-
rameter CIs in one go, this does not fit nicely into the BYOM framework. Therefore,
the algorithm will produce its own output (with CIs), before the standard BYOM
output of the optimisation routine.

3. The code for the parameter-space explorer is kept the same as in openGUTS as
much as possible, to allow easy updating in the future (e.g., to match any changes
to openGUTS in BYOM). Major difference in the structure of the code is that
openGUTS collects and follows a standard set of 5 parameters (all of the parameters
of the reduced GUTS models), whether they are fitted or not. Since the BYOM
implementation needs to be more generic and flexible, it only collects/follows the
fitted parameters. This has some consequences for the logistics in the code.

4. The adaptation to BYOM was performed to accommodate DEBtox analyses in the
near future. Since DEBtox always requires ODE solvers these analyses will be sub-
stantially slower than those for GUTS. For this reason, the settings of the algorithm
were modified to increase speed, sacrificing some robustness/precision. There is an
option opt_optim.ps_rough that is by default set to 1 (rough calculations), but can
optionally be set to 0 (same settings as openGUTS). Furthermore, an option was
included to skip profiling and additional sampling rounds for initial exploration.

5. In general the BYOM framework is distributed under a very open MIT-style license.
However, the parameter-space explorer was developed for openGUTS, which is dis-
tributed under the GNU GPL V. 3, which is more restrictive. Therefore, the BYOM
versions of the openGUTS functions (in the directory engine\parspace) are also
distributed under the GNU GPL.
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7 Detailed analysis of fluorophenyl case study

The main text shows the analysis for GUTS-RED-SD on the data set of fluorophenyl
in fathead minnows, performed with the BYOM implementation (https://www.debtox.
info/byom.html). Here, the parameter estimates and the CIs are shown as performed
with the openGUTS standalone software (https://openguts.info/download.html, v.
1.0), and both the SD and IT models are fitted. The results are compared to the Bayesian
inference for GUTS in the MORSE package (version 3.2.5) for R (version 3.6.3 ) (see
https://cran.r-project.org/package=morse), to show the influence of the rules for
deriving priors as proposed by [3]. The same rules are used in the on-line automated
calculations of MOSAIC (https://mosaic.univ-lyon1.fr/guts, see [1]). Since MOSAIC
always fits the background hazard together with the other model parameters, this is here
also done for openGUTS.

Many thanks to Benoit Goussen for performing the MORSE calculations in R for me.
The MOSAIC software ran into problems with the calculations of the LP10, and does
not provide the output for the comparison of priors to marginal posteriors. Therefore, the
MORSE calculations are more suitable for the comparison (the fits in MOSAIC were almost
identical, as the same engine is used as in MORSE). One modification was necessary: the
MFx function in the MORSE package was modified for the SD models in order to use the
ODE solver (function predict_ode). The calculation returns NAs otherwise.

7.1 GUTS-RED-SD fit

Table 1 below provides the parameter estimates with their confidence/credible intervals.
For the openGUTS analysis, this is the best-fitting parameter set with 95% likelihood-
based confidence interval. For MORSE, this is the median of the marginal posteriors, with
its 0.025-0.975 quantiles. The figures show the most relevant output of both platforms.
The fits are here shown in a multipanel figure, which makes them readable when plotting
with CIs.

Visually, the two fits are quite similar, and also the optimised parameter estimates are
not too different. However, the CIs are very different, especially the lower edges of the CIs
for kd and mw, and the upper edge of the CI for bw. For openGUTS, the best value is well
defined (as identified from the profiles in Fig. 15), but the CIs include slow kinetics (kd
running away to zero: −∞ on log-scale). The hard min-max bounds prevent the sample
from running away, but they do allow very low values of kd in the CI. The model fit with
kd at its lower boundary of 0.001641 d−1 is not significantly worse than the best fit as the
profile curve stays below the critical value. Since the profile likelihood for kd is flat in the
lower part of the plot, we can conclude that kd = 0 would also not provide a worse fit
(although the model would need to be adapted to represent a kd of exactly zero, see [10],
Appendix C).

Clearly, the MORSE fit does not go into slow kinetics: the lower edge of the CI for kd
is well-defined at 0.23 d−1. Similarly, a large difference with openGUTS is observed for
the lower CI of mw and the upper CI of bw. The reason lies in the choice of priors, as
can be seen in Figure 18. Usually, one would like to see that priors exert little influence
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on the posterior, so that the latter is dominated by the information in the data (unless
priors can be based on previous experiments). Therefore, the marginal posterior should
have a large, narrow peak well within the range of the prior. This is observed for bw and
kd, but not for hb and mw. For the backgound hazard hb, this is not too interesting: there
is no control mortality in this data set, so any low value for hb is fine (i.e., there will be no
difference in the fit if we use hb = 10−3 or hb = 10−6 or even hb = 0). For mw, the shallow
marginal posterior, sitting on the edge of the prior, is of more concern. Even though the
prior is unbounded, it assigns a very low a priori probability to values of mw below the
lowest exposure concentration in the data set (here 1.8 µM). Therefore, mw is effectively
prevented to go to low values. However, this also blocks kd from going to low values; slow
kinetics can only occur with low values of mw (and high values for bw). The reason lies
in the fact that GUTS uses scaled damage as the property driving toxicity. Low values
for kd imply low values of damage, within the duration of a standard 4-day toxicity test
(only in steady state will the scaled damage approach the external concentration). Since
there are effects observed with very low implied damage levels, mw must be very low as
well. And, unlike hb, the exact value of mw now matters considerably. Therefore, the
openGUTS parameter-space plot (Fig. 15) shows this tight correlation between mw and
kd. The MORSE plot (Fig. 17) does not show such strong correlations because a large
part of parameter space is effectively cut off. Imagine taking the sample in Figure 15, and
cutting out all values for log mw < 0. Due to the correlations with the other parameters,
this also implies cutting out low values for kd and high values for bw, and we end up with
a comparable result as for the MORSE output.

Looking at the model predictions (LC50 and LP10), the best estimates are reasonably
comparable, but the lower edges of the CIs are mostly very different. They are not too
different for the 4-d LC50, which is basically an interpolation within the data set. However,
for the 28-d LC50, the difference is substantial. For the LP10, matters are worse, especially
for the FOCUS profile (which is the longest at 485 days): the openGUTS calculation yields
a 60-times higher risk for this chemical (based on the lower edge of the CIs). This is caused
by the fact that MORSE penalises slow kinetics with a low a priori probability, which will
affect long-term extrapolations most.

Table 1: Parameter fits with CIs using openGUTS and the MORSE package for R. Pre-
dictions for LC50/LP10 also shown with CIs.

data A SD openGUTS MLL = 37.74 MORSE-GUTS
Param. Best fit 95% interval Median 95% interval
kd 0.2607 0.001641* - 1.036 0.5289 0.2285 - 1.466
mw 1.536 0.007053 - 2.857 2.278 1.379 - 3.693
hb 1E-6 1E-6* - 0.01641 3.141E-3 1.574E-4 - 0.02122
bw 0.2088 0.06646 - 38.24 0.1275 0.05262 - 0.3080
4-d LC50 5.66 4.612 - 7.559 5.97 4.92 - 7.86
28-d LC50 1.743 0.3082 - 3.087 2.54 1.53 - 3.86
LP10 FOCUS 1.72E3 25.8 - 2.76E3 2.36E3 1.58E3 - 3.50E3
LP10 Monitor 2.15E4 1.27E3 - 2.94E4 2.66E4 1.99E4 - 3.36E4
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The openGUTS software yielded the following explanation for the asterisk (for the lower
edge of the CI of kd and hb):

* edge of 95% parameter CI has run into a boundary

(this may also have affected CIs of other parameters)

The MOSAIC software yielded the following warnings:

- The estimation of the natural instantaneous mortality rate (model

parameter hb) lies outside the range used to define its prior

distribution which indicates that this rate is very low and so

difficult to estimate from this experiment !

- The estimation of Non Effect Concentration threshold (NEC) (model

parameter z) lies outside the range of tested concentration and

may be unreliable as the prior distribution on this parameter is

defined from this range !

The latter point is the important one. However, it is not just the estimate for the threshold
that is unreliable, owing to the strong correlations between the parameters.
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Figure 14: OpenGUTS fit for fluorophenyl SD.
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Figure 15: OpenGUTS parameter-space plot for fluorophenyl SD.

Figure 16: MORSE fit for fluorophenyl SD.
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Figure 17: MORSE posterior plots for fluorophenyl SD.

Figure 18: MORSE comparsion priors to marginal posteriors for fluorophenyl SD.
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7.2 GUTS-RED-IT fit

Note that openGUTS uses the fraction spread Fs as measure for the width of the threshold
distribution, while MOSAIC/MORSE uses the β of the log-logistic distribution. Therefore,
openGUTS also recalculates Fs into β, so that is given below as well.

The IT fit also goes into slow kinetics, but in contrast to the SD fit, the best estimate
also runs away. Therefore, the best estimate is effectively undefined. This has no conse-
quence for the model fit: at low kd, the GUTS-RED models reduce from a 4 parameter
model to a 3 parameter one. In the IT model, the model behaviour is completely deter-
mined by a compound parameter mw/kd (for the SD model, another compound parameter
will be bw × kd). As long as this compound parameter has the same value, the absolute
value of the two underlying model parameters becomes irrelevant (and the same fit results).
Interestingly, this can be seen from the best estimates of the two platforms: the absolute
values are approximately a factor of 100 different, but the ratio mw/kd is very similar.

As with the SD fit, the best estimate and the lower edges of the CIs of mw and kd
cannot go towards very low value as this area of parameter space is penalised by the prior
for mw. This prior assigns low a priori probability to mw values below the lowest tested
concentration of 1.8 µM (the lower quantile of mw’s marginal posterior is just below that).

As with the SD fit, the 4-d LC50s are rather comparable, along with their CIs. This
is to be expected as the fits (with CIs) are also very similar. However, the extrapolations
to longer time scales yield very different results, and now also very different for the best
estimate. For the FOCUS profile, the predicted risk is more than 20-times higher in
openGUTS than in MORSE (based on the best estimate for the LP10; a factor of 18 on
the lower edge of the CI).

Table 2: Parameter fits with CIs using openGUTS and the MORSE package for R. Pre-
dictions for LC50/LP10 also shown with CIs.

data A IT openGUTS MLL = 38.61 MORSE-GUTS
Param. Best fit 95% interval Median 95% interval
kd 0.001642 0.001641* - 0.3705 0.1681 0.07256 - 0.3738
mw 0.0381 0.0319 - 4.92 3.056 1.601 - 5.068
hb 1E-6 1E-6* - 0.01711 2.684E-3 1.428E-4 - 0.01986
Fs 2.737 1.878 - 4.738
β 3.638 2.355 - 5.826 3.975 2.404 - 6.064
4-d LC50 5.819 4.844 - 7.468 6.22 5.26 - 7.85
28-d LC50 0.8478 0.7057 - 4.904 3.00 1.62 - 4.96
LP10 FOCUS 77.2 55.8 - 2.96E3 1.80E3 1.02E3 - 2.97E3
LP10 Monitor 3.53E3 2.55E3 - 3.19E4 2.34E4 1.56E4 - 3.28E4

The openGUTS software yielded the following explanation for the asterisk (for the lower
edge of the CI of kd and hb):

* edge of 95% parameter CI has run into a boundary

(this may also have affected CIs of other parameters)
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The MOSAIC software yielded the following warnings:

- The estimation of the natural instantaneous mortality rate (model

parameter hb) lies outside the range used to define its prior

distribution which indicates that this rate is very low and so

difficult to estimate from this experiment !

- The estimation of log-logistic median (model parameter alpha) lies

outside the range of tested concentration and may be unreliable as

the prior distribution on this parameter is defined from this range !

The latter point is the important one. However, it is again not just the estimate for the
median threshold that is unreliable.
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Figure 19: OpenGUTS fit for fluorophenyl IT.
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Figure 20: OpenGUTS parameter-space plot for fluorophenyl IT.

Figure 21: MORSE fit for fluorophenyl IT.
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Figure 22: MORSE posterior plots for fluorophenyl IT.

Figure 23: MORSE comparsion priors to marginal posteriors for fluorophenyl IT.
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7.3 Conclusions on the comparison openGUTS-MORSE

When the data carry sufficient information on the model parameters, the posterior will be
well constrained by the data, the weakly-informative priors of MORSE/MOSAIC do not
come into play, and the results will be very similar to those of openGUTS (see test results for
openGUTS from the background documents on https://openguts.info/download.html,
and ring test results in [10], Appendix A). The results will not be identical as openGUTS
presents the best-fitting parameters (the set with the lowest MLL) while MOSAIC/MORSE
provides the median of the posterior marginals. Furthermore, the CIs will be somewhat
different since they have a different interpretation. Nevertheless, these differences are
hardly relevant from the practical standpoint of environmental risk assessment (ERA).

However, when the data set cannot constrain the posterior, the priors begin to exert
an influence, and larger differences will ensue. The most problematic case will be ‘slow
kinetics’, which is why such a data set was used for the comparison in this section (in
retrospect, such a data set should have been included in the GUTS ring test as well).
The results clearly show that the rules for generating priors in MORSE (and MOSAIC,
which uses the same rules) prevent the model fit and the model predictions to reflect slow
kinetics. The results from a 4-day toxicity test simply cannot contain information on the
model parameters when damage dynamics is (or might be) very slow. In the MORSE
calculations, this lack of information in the data set is augmented by a specific set of
priors, which dominate the posterior and prevent it from going into slow kinetics.

MORSE displays a warning on screen that “The estimation of log-logistic median
(model parameter alpha) lies outside the range of tested concentration and may be unre-
liable as the prior distribution on this parameter is defined from this range !” What this
implies is that the threshold mw wants to be lower than the lowest non-zero test concentra-
tion. This is a clear sign of slow kinetics: it is in the structure of the reduced GUTS models
that when kd becomes very low, mw must also be very low (and for SD, bw must be high).
This is explained in much more detail in Appendix C of the e-book [10]. However, the rule
for deriving the MORSE/MOSAIC prior for the threshold mw is based on the assumption
that the threshold should be within the range of tested concentrations. Therefore, a prior
is constructed that assigns low a priori probability to thresholds below the lowest non-zero
test concentration (here: 1.8 µM) [3]. The tables above show that the lower edge of the
CI on mw, as given for MORSE, is indeed not much lower than that value, both for the
SD and IT fit. Preventing the posterior to go to low values for mw also prohibits kd to go
to low values, because of the strong correlation between the parameters (as can be seen in
the parameter-space plots from openGUTS). The prior for kd does not assert that much
influence here, since its lower-reasonable bound is set at a value where damage reaches
only 0.1% if steady state by the end of the test. For a 4-day toxicity test, this will be at
kd = 2.5 10−4 d−1, which is even lower than the lower bound for kd as used in openGUTS
(kd = 1.6 10−3 d−1). Therefore, it is the unfortunate choice of prior for mw that prevents
the fit from showing slow kinetics.

It is unclear why this particular rule for mw’s prior distribution was selected, but it was
likely a failure to appreciate the model’s behaviour under slow kinetics. As a consequence
of this specific prior, when the data set allows for slow kinetics, how low kd and mw can
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go will depend on the, rather arbitrary, choice of the lowest non-zero test concentration in
the toxicity test. This will generally have little consequences for the model fit to a 4-day
test (also in this case, the model fits are very similar), nor for the 4-d LC50, but it will
strongly bias the model predictions for much longer time scales. These predictions will
now not reflect the possibility of irreversible effects and thus fail to represent a worst-case
interpretation of the data in a regulatory context.

The impact of these subjectively limited priors can be minimised by a more careful
choice of their width. Rather than basing these priors on test design only, it would be
prudent to also consider the extrapolations foreseen (and to consider the structure of the
GUTS models, where low values of kd imply low values for mw).

7.4 General remarks on Bayes versus frequentist

As already noted, Bayesian and likelihood-based frequentist model analyses will yield very
similar results as long as the priors do not impart information (priors specify our beliefs
about the values for the model parameters before looking at the data). When the priors
are truly non-informative, the Bayesian analysis will reflect the information in the data
set only, which is also true for the frequentist analysis. As an aside, truly objective model
analysis is impossible for either framework as subjective choices will go into model building
and in the definition of the likelihood function. For GUTS applications, it is a rather
common situation that data sets (results from acute toxicity tests) do not carry sufficient
information to identify all model parameters. The case study in the section is an example
of that, showing ‘slow kinetics’ (kd → 0, mw → 0, bw → ∞). A similar, but less invasive
identifiability problem is that of ‘fast kinetics’ (kd → ∞). These and other cases are
demonstrated in the ‘guide to interpretation’ from the openGUTS web page (http://
openguts.info/download.html).

In the likelihood-based frequentist approach, identifiability issues are easily recognised
(some parameters run into a min-max bound and the likelihood profile becomes flat). As
long as the lowest-possible MLL is established, there are no consequences for the defined
edges of the CIs (which are based on their MLL relative to the best fit). Therefore, we only
need to ensure that the min-max bounds consider the information that can, in principle,
be available in the data set (and thus using test design), and the degree of uncertainty that
would be relevant for the foreseen extrapolations. For openGUTS that means extrapolation
to 485-day FOCUS profiles. A 4-day toxicity test will never contain information on the
model parameters for very slow chemicals (low value of kd). However, such low values are
highly relevant from the ERA perspective, when extrapolating to much longer time scales.

For Bayesian analysis, identifiability problems are of greater concern than for likelihood-
based frequentist approach, as such issues preclude the use of non-informative priors. When
priors are taken as non-informative, and the data do not carry sufficient information,
the posterior will be ‘improper’ (does not integrate to one), causing problems in MCMC
analysis and precluding Bayesian inference [4, 18]. The solution is to use priors that
do carry some information. Few people would object if prior distributions are based on
well-established knowledge (e.g., information from previous toxicity tests on the same, or
similar, chemical-species combination). However, in general, we do not have such informa-
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tion for TKTD models. Automation would thus have to rely on some subjective choices,
which needs to be considered carefully.

The choice of priors is a recurring area for debate, also among Bayesians. An example
is the discussion of ‘objective’ [2] versus ‘subjective’ [5] analysis. There are two points that
I like to take away from that discussion. The first is that regulatory authorities will prefer
analyses based on objective methodology [2], meaning that priors going into an analysis
either do not affect the conclusions, or are based on previous scientific work. The second is
that, for a subjective analysis to be widely supported, the priors should reflect the diversity
of beliefs held within the scientific community [5], but the “pain to gain ratio” needs to
justify such efforts.

To translate these points to the case at hand, automation of Bayesian TKTD analysis
in a truly objective sense is out of reach (at least at this moment). Using priors carrying
no information may cause Bayesian inference to fail, and there is insufficient knowledge
about (patterns in) TKTD model parameters to construct objective informative priors in
an automated manner. If subjectively-informed priors are used in ERA, they either need to
exert negligible influence on the results (in all cases), or they need to be widely agreed upon.
The case study shows the first not to be true for the Bayesian MORSE/MOSAIC tools: the
rules for automatic prior selection [3] hamper the analysis to reflect irreversible mechanisms
of toxicity. The second statement is also not true: these rules where not discussed with
a wider group of ERA stakeholder, and it should be clear that not all experts agree on
this particular choice of priors [7]. Until ERA itself is placed into a Bayesian framework, I
would conclude on pragmatic grounds that frequentist likelihood-based methods are more
suitable in the context of automated TKTD analysis. Identifiability issues can be readily
recognised and have limited impacts on the analysis (with a careful choice of min-max
bounds), while avoiding a debate on the most appropriate prior distributions.
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